ICS API FOR JAVA

User’s Manual v6.0

Revision 2, August 6, 2003.
Copyright © 2000 — 2003 by PureEdge Solutions Incorporated. All rights reserved.

U.S. Government Restricted Rights. The Product is provided with RESTRICTED RIGHTS. Usg,
maodification, reproduction, release, performance, display or disclosure by the government is subject to
restrictions as set forth in subparagraph (b)(3) of The Rightsin Technical Data- Noncommercial Items,
DFARS 252.227-7013. The rights stated in subparagraph (c) of the Commercial Computer Software -
Restricted Rights, 48 CFR 52.227-19 are hereby withheld from the government. Manufacturer is
PureEdge Solutions Inc., located at 4396 West Saanich Rd., Victoria, BC Canada V8Z 3E9.

PureEdge Solutions, Internet Commerce System (ICS), and ICS API are trademarks of PureEdge
Solutions, Incorporated. All other products or services mentioned in this manual are trademarks,
registered trademarks, service marks, or registered service marks of their respective companies or
organizations.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

The MD5 Message-Digest Algorithm is Copyright \251 1991, 1992 RSA Data Security, Inc.

For further documentation and up-to-date information, please visit our website at:
www.docs.PureEdge.com

PureEdge Solutions www.PureEdge.com

tel. 1-888-517-2675 fax. 250-708-8010 email. info@PureEdge.com
address. 4396 West Saanich Rd., Victoria, B.C. V8Z 3E9

Contents

INTRODUCTION ..ot e e e e e e e i e 1
ABOUT THIS MANUAL . oottt ittt e e e e e e e e 1
ABOUT THE ICS APl . . e e e e e i 3
WHERE THE ICS API FITSIN YOUR SYSTEM . . .t ittt ettt et e e e e e e e e e e e 3
DIFFERENCES BETWEEN THE JAVA AND CEDITIONSOF THE API o 3
THE APl DATA Y PES . ottt ittt et e e e e e e e e e e e e e e e e e e 4
ABOUT THE APl CONSTANT S . o ittt et e et e e e e e e e e e e e e e e e 5
OVERVIEW OF THE FORM STRUCTURE. o 7
THE NODE STRUCTURE. . . o ot ittt ettt ettt ettt e ettt et e e s et et i aae s 7
THE NODE HIERARCHY . . vttt ettt e e e e e e e e e e 7
REFERENCES . . . ittt et et e e e e e e 8
ADVANCED INFORMATION ABOUT THE NODE STRUCTURE . . .ttt ittt ettt ettt ettt ettt i 11
INTRODUCTIONTO THE FORM LIBRARY .. e 15
ABOUT THE FORM LIBRARY . . .ot e s 15
GETTING STARTEDWITH THE FORM LIBRARY .. oo 17
SETTING UP YOUR APPLICATION . v vttt et e et e et et e et et e e e e e et e e e e e e e e 17
INITIALIZING THE ICS APl . .o e e e e e e e e e e 19
LOADING A FORM . . .ttt e e e e e e 19
RETRIEVING A VALUE FROM A FORM . . .o ittt et et e e e e e e e e e e e e e e e 20
SETTING VALUES IN A FORM . .ottt it e e e e e e e e e e e e e e e e e 21
WRITING A FORM TO DISK . .ottt e e e e e e e e e e e e e e e e e e 21
CLOSING A FORM . .ottt e e e e e e e e e e 22
COMPILING YOUR APPLICATION. & v ottt et e et et e e e e e e e e e e e e e e e e e e e 22
DISTRIBUTING APPLICATIONS THAT USE FORM METHODS . . . vttt ittt ettt ettt e e e 22
SUMMARY .ottt et e e e e e e e e 23
FORM LIBRARY QUICK REFERENCE GUIDE 25
ICS APl CLASSES AND METHODS . v it ittt ittt ettt e et et e et e e e e e 25
ABOUT THE METHOD DESCRIPTIONS . . v vt ittt ittt e et e et et e e e e e s 27
ABOUT SPECIFIED OBJIECT NODES . . o ittt ittt ettt ettt et e e e e e e e e e e e 27
THE CERTIFICATE CLASS. .o e e e e 29
GETDATABY PATH. . oo s 30

THE DTK CLASS . o e e 35

ii | Contents

LT Y 4 = 36
THE FORMNODEPR CLASS. . . e e e e e e e 39
ADDIN AMESPA CE . . & i ittt ittt e e e e e 40
CREATECELL . . o ittt ettt et e et e e e e e e e 42
DELETESIGNATURE . . . ittt it et et et et e e e e e e e e e e et e e e e e e 44
DEREFERENCEEXo et e e e e 46
DESTROY & vttt it et e e e e e e e e 49
10 = T 07 =S 50
ENCLOSEFILE. . . ot ittt et et e e et e e e e e 52
ENCLOSEINSTANCE . . . ittt ittt e et et e e e e e e e e e e e e e e e e 54
EXTRACTFILE . . o e et e e e e e 56
EXTRACTINSTANCE . . .ottt ittt ettt et e e e e e e e e e e e e e e e e 57
GETATTRIBUTE . .\ ittt ettt et e e et e et e e e e e et e e e e e e e e e e e 60
GETATTRIBUTELIST ..ottt e e e e e e e e e e e e e e e e i i 62
GETCERTIFICATEL ST . .o e e e e e e e e e e e e e e 64
GET CHILDREN .« o ittt ettt e et et e e e e e e e e e e e 66
GETINFOEX . . it e e e e e e e 68
GETLITERALBY REFEXo e e e e e e e e e e 70
GETLITERALEX . .o i e e e e e e e e 73
GETLOCALN AME. . . o e e e e e e 74
GETNAMESPACEURI . . . o e e 76
GETNAMESPACEURIFROM PREFIX .. .o i e e e e e e e e e e e e e e 78
GETN X T . ittt e e e et e e e e e e e 80
GETN ODE T Y PE . .t ittt et e e e e e e e e e e 81
GET P ARENT . . .ottt it et e e e e 82
GET P REFIX. . ot ittt e e e e 84
GETPREFIXFROMNAMESPACEURI . . .o e e e e e e e e e e i 86
GETPREVIOUS . . .ttt e e e e e e e 88
GETREFERENCEEXo e e e e e e e e 89
GETSECURITYENGINENAME . . . oo e e e e e e e e e e e e e e e 92
GETSIGLOCK COUNT .« .ottt it it et et et e e e e e e e e e e e e e 94
GET S GNATURE . & ittt ettt e et e et e et e e e e et e e e e e 95
GETSIGNATUREVERIFICATION ST ATUS . . ot ittt it et et e e e e et et e e e e e e 97
LSy, 3/ 0 98
REMOVEATTRIBUTE .. ittt ittt et ettt et e et e e e e e et e et et e et e e e e e e e e e e 100
REMOVEENCLOSURE . . . ottt ittt ittt et e e e et e e et e e e e e e e e 102
SETACTIVEFORCOMPUTATIONALSY STEM . .ottt i ettt e it et e et et e et e e et e e e 103
SET AT TRIBUTE &« ot ittt ettt et et e e et et e e e e e et e e e et e e e e e 105
SETFORMUL A . oottt et e e e e e 107
SETLITERALEX . .o e e 109
SETLITERALBY REFEX.o e e e e e e 111
SIGNF ORM . . ot e e e 114
VALIDATEHM A CWITHSECRET . . . ot ittt it et et et e e e e e e e e e e e e e e 116

VALIDATEHM A CWITHHASHED SECRET .« & v v vttt ettt ettt et e et et e et e 119

Contents | iii

VERIFY ALLSIGNATURES . . & v ittt et e et e e e e e e e et e e e e e e e e e e e e e e e e e 122
VERIFY SIGNATURE &« . ot vttt ettt e et e 124
WRITEF ORM. . . .ttt e e e e e e e e e e 127
XMLIM ODELUPDATE .« . vttt ettt et et e e et e e e e e e e e e e e e 129
THE HASH CLASS . .o e e e e e i 131
HASH o ottt ettt e e e e e 132
THE IFSSINGLETON CLASS. . o e e e e e 135
GETFUNCTIONCALLMANAGER . . . i ittt e et e e et e e e e e e e e e e e e e e 136
GETLOCALIZATIONMANAGER.. .« &« i ittt ettt et e et et e e e e e e e e e e e e e e e 137
GETSECURITYMANAGER . « .« v ottt ettt et e et e e et e e e e e e e e e e e e e 138
GETX DL .o e e e 139
THE LOCALIZATIONMANAGER CLASS ... e e 141
SETD ERAULT L OCALE & vttt ittt ettt et e e e e e 142
THE SECURITYMANAGER CLASS. ... e e 143
LOOKUPHASHALGORITHM & ottt ittt ettt et e e et e e et e e e e e e e e e e e 144
THE SIGNATURE CLASS . . . e e e e e 145
GETD ATABY PATH. oottt e e e e e e e e e e 146
THE XFDL CL ASS . . e e e e e e e e e 151
CREATE &+ i ittt ettt ettt et e e e e e e 152
GETENGINECERTIFICATEL ST & ottt ittt et e e e e e e e e e e e 155
ISDIGITALSIGNATURESAV AILABLE. .« & vt ittt ettt et et e e et e et e et e e e e e e e 158
READF ORM . ottt et et e e e 159
INTRODUCTIONTO THE FCI LIBRARY . oo e 163
ABOUT FUNCTIONS, PACKAGES AND EXTENSIONS. . .\ttt ittt ettt ettt ettt e e 163
ABOUT THE FUNCTION CALL INTERFACE (FCI)ot 164
GETTING STARTEDWITH THE FCI LIBRARY . .o e 169
CREATING EXTENSIONS WITH THE FCI METHODS ot i ittt et e e et et e e et e et e 169
SETTING UP THE [FX EXTENSION . . o ottt e et e e et e e e e e e e e e et e e e e e e 170
SETTING UP THE FUNCTIONCALL CLASS & . it ittt et et e et e e e e e e e e e 172
BUILDING THE IFX EXTENSION . .ttt ittt ettt ettt e ettt et e ettt e et e e e e e e e e e 179
TESTING AND DISTRIBUTING [FX EXTENSIONS . . o\ttt et et et et e e e et e e e e et 180
SUMMARY . ottt et e e e e e e e e e e 183
FCI LIBRARY QUICK REFERENCEGUIDE i 185

ABOUT THE METHOD DESCRIPTIONS . . & vttt it ettt ettt et et e et e e e e e e e e 185

iv |

Contents

THE EXTENSION CLASS . .. e e e e e 187
EXTENS ON NI T & ottt ettt e e et e et e et et e 188
THE FUNCTIONCALL CLASS. . o e e e 189
FUNCTIONCALL CLASS CONSTANT S, &« o vttt ettt e et e e e e e e e e e e e e e e e 190
EV A LUATE . ottt ittt e et et et e e e e e e e 192
= 2 196
THE X CL ASS . .o e e e e e e e e e e e e e e e e 199
DEREGISTERINTERFACE. . . o ittt ettt et e 200
GETINTERFACEINSTANCES . . vttt ettt e et e e et e e e e e e e e e e e e e e 201
REGISTERINTERFACE . . . ot vttt et et e et e e e e e e e e e e e e e e e e e e 203
THE FUNCTIONCALLMANAGER CLASS e 205
DEREGISTERFUNCTIONC ALL &« v vt vttt et et et et et e e et e et e e e e e e e e e 206
EVALUATEFUNCTIONC ALL .« ottt vttt et et e e e e e e e e e e e e 208
GETDERAULTLISTENER . & vttt ittt e et et e e e e e e e e e e e e e e 211
REGISTERFUNCTIONC ALL . o vttt vttt e et et et et et e e et e e e e e e e e e e 212
GETFUNCTIONC ALLHELP . . oot e e e e e e e e e 215
GETFUNCTIONC ALLLIST . ottt e e e e e e e e 218
GETFUNCTIONCALLPACK AGELIST . o ottt e e e e e e e e 219
APPENDIX: JSP SUPPORT . ..o e e 221
SYSTEM REQUIREMENT S, & v vttt it et et e et e et et e e e e e e e e e e e e e e e e 221
COMBINING JSP AND XDo e e e e e e e e e e e 221
SAMPLE JOP PAGE . ..ottt e e 222
SAMPLE JSP APPLICATION & o vttt e et et e e et e e e e e e e e e e e e 223

Introduction

Welcome to the Java™ Edition of the user’s manual for the ICS API. The ICS APl extends the
capabilities of the Internet Commerce System by enabling you to:

= Manipulate XFDL formsfrom new or existing applications.
= Create custom-built functions that may be integrated into XFDL forms.

This section discusses the organization and format of this manual. To learn more about the API, refer to
“About the ICS API” on page 3.

About This Manual

This manual contains five major sections:

Section Page

Overview of the Form Structure — explains how XFDL forms are stored in 7
memory.

Getting Started with the Form Library — provides a detailed tutorial 17
demonstrating how to create a simple application that interacts with an XFDL
form.

Form Method Library — a reference to the Java methods contained in the 25
Form API. Each method description includes sample code.

Getting Started with the FCI Library — provides a detailed tutorial 169
demonstrating how to create a simple function that you can call from an
XFDL form.

FCI Quick Reference Guide — a reference to the Java methods contained in 185
the FCI API. Each method description includes sample code.

Who Should Read This Manual

The ICS API is designed to be easy to use for any moderately experienced programmer. However, the
skill level required to develop particular functions may be quite high. This document is intended for
developers who have a working knowledge of:

= JavaProgramming and syntax.

= Extensible Forms Description Language (XFDL) and syntax. Refer to the Extensible Forms
Description Language Specification for more information.

Document Conventions

The following conventions appear throughout this manual:
= Samplecodeis presented in a monospaced font, and is indented to make the code stand out.

public void extensionlnit(Extension theExtension) throws UW Exception

{

2 | About This Manual

FunctionCal I theActual Code = new Sanpl ePl ugi nFCl (t heExt ensi on) ;

}
Text in bold italics denotes information that you need to supply.
<l abel sid = "I1">

your i nput

<si ze>

<ae>20</ ae>
<ae>1</ ae>
</ size>
<val ue conpute = "sanpl e_Package. nmul tiply(fl.value,f2.value)"></val ue>
</ | abel >

The hash symbol (#) represents a number.

Angle brackets enclose placeholders. For example, <API Program Folder> represents the actual
folder in which you installed the API.

This manual uses “xx” or “xxx” in place of the two or three digit version number of the API. In
particular, these placeholders appear when referring to file names, folders, and directories that
contain the API’s version number.

Braces enclose optional items. The following example indicates that the item tag (including the
period after it) is optional:

{itentag.} option
Brackets are used to indicate a sequence of choices, and the pipe symbol (|) isused to indicate
“or”. The following example indicates that you can use anumber or a name:

(nunber | nane)

About the ICS API | 3

About the ICS API

The ICS Application Programmer Interface (API) consists of a collection of programming tools to help
you devel op applications that can interact with XFDL forms. These tools are available for both C and
Java programming environments. The API enables you to access and manipulate forms as structured
datatypes.

The API isdivided into two libraries: the Form Library and the Function Call Interface (FCI) Library.
The Form Library allows you to create applications that:

= Read and write forms.

= Retrieve information from form elements.

= Add cellsto certain form items.

= Insert information into form elements.

For more information about the Form Library refer to page 25.
The Function Call Interface (FCI) Library provides additional methods that:
= Create, duplicate, or delete form elements.

= Manipulate and verify digital signatures.

= Handle attachments.

= Create custom functions for use within forms.

For more information about the FCI Library refer to page 185.

Where the ICS API Fits in Your System

The Internet Commerce System (ICS) provides a powerful suite of forms software for creating, using
and transmitting forms over the Internet. The main components of the Internet Commerce System are:

ICS Viewer — Usethe Viewer to view XFDL formsjust as you would use a web browser to view
HTML pages. You can also use the Viewer to fill out forms and submit them for review.

ICS Designer — The Designer provides an easy to use WY SIWY G design environment for creating
XFDL forms. Use the Designer to create forms quickly and easily.

ICS API - The ICS APl ismade up of Form and FCI methods. Use the Form Library of methods to
develop applications that manipulate XFDL forms. Use the FCI methods to devel op customized
functions that can be called from within forms.

Differences Between the Java and C Editions of the API

The main difference between the Java and C versions of the ICS API istheinclusion of an object-
oriented interface for the Java platform. The XFDL form node structure is unaltered and the
functionality of the two versions of the API is the same.

4|

The API Data Types

The API Data Types

FormNodeP Objects

The methods in the Form Library store formsin memory as a series of linked nodes. Each node,
regardless of itslevel in the hierarchy, is represented by a FormNodeP object. Before you can use a
FormNodeP object you must import the FormNodeP class as follows:

i mport com Pur eEdge. xf dl . For mMNodeP

About Memory Use

The Form methods are responsible for creating and populating these nodes. Furthermore, once you are
done working with a form, you must use the destroy method on the root node of the form to remove it
from memory.

Comparing FormNodeP Objects

Be aware that in Java, objects cannot be compared using the == operator. The ICS APl behavesin the
same way. Accordingly, when comparing For mNodeP objects, you should always use Java's . equal s
method.

Holder Objects

Because Java does not support output parameters, methods are normally limited to returning asingle
value. However, there are many casesin which it is useful to return multiple values from asingle
method. In these cases, the API uses Holder objects.

Holder objects are objects that are created with a single variable. These objects can then be passed into
amethod that setsthat variable. Once the method returns, the value of variable can be retrieved, thereby
creating an artificial output parameter for the method.

Holder Constructors

Each Holder class provides two constructors:

= Anempty constructor that creates an object and declares the an empty variable called value. For
example, to create an empty IntHolder you would use the following constructor:

I nt Hol der nylnt = new I nt Hol der ();

= A constructor that creates an object, declares avariable called value, and and sets the value of the
variable. For example, to create al ntHolder object with avalue of 5, you would use the following
constructor:

I nt Hol der nmylnt = new I nt Hol der (5);

About the API Constants | 5

Getting and Setting Holder Values

To get or set the value of aparticular Holder object, simply dereference the holder’s value. For
example:

i nt value = nylnt Hol der. val ue;
nyl nt Hol der . val ue = 2;

Holder Types

Thefollowing table lists the holder types available, the data type of each holder’svariable, and the class
you must import to use the holder:

Holder Data Type Class

BooleanHolder Boolean com.PureEdge.BooleanHolder
IFSUserDataHolder IFSUserData com.PureEdge.IFSUserDataHolder
IntHolder Int com.PureEdge.IntHolder
ShortHolder Short com.PureEdge.ShortHolder
ShortArrayHolder Short] com.PureEdge.ShortArrayHolder
StringHolder String com.PureEdge.StringHolder
StringArrayHolder String [] com.PureEdge.StringArrayHolder
StringListHolder String [] com.PureEdge.StringListHolder

Note: While certain methodsin the FCI library require an IFSUserDataHolder as a parameter, you
will not need to manipulate this object.

About the APl Constants

Several APl methods may use or return constants. When using these constants, you must:
= |Import the library that contains the constant.
= Prefix the constant with its class.

For example, the ITEM_REFERENCE constant belongs to the FormNodeP class. To use it, you would
first ensure that you have imported the FormNodeP class. You could then refer to the constant as:

For mMNodeP. | TEM_REFERENCE

The following table lists the constant prefixes and the classes you must import:

Prefix Class

FormNodeP com.PureEdge.xfdl.FormNodeP

6 | Aboutthe API Constants

Prefix Class
SecurityManager com.PureEdge.security.SecurityManager
SecurityUserStatusType com.PureEdge.security.SecurityUserStatusType

XFDL com.PureEdge.xfdl. XFDL

Overview of the Form Structure | 7

Overview of the Form Structure

This section provides an overview of an XFDL form asit is represented in memory. Developers must
understand the memory structure of aform to effectively develop applications using the ICS API.

The Node Structure

When aform isloaded into memory, it is constructed as a series of linked nodes. Each node represents
an element of the form, and together these nodes create a tree that describes the form. The following
diagram illustrates the general composition of a single node.

Type Identifier

Literal Compute

Each node within the tree has the following properties:

= Type - For page and item nodes, this describes the type of node, such as button, line, field, and so
on. Page nodes are always of type page.

= Literal - Theliteral value of the node (for example, aliteral string). If the node has aformula, the
result of the formulawill be stored here.

= ldentifier - The page tag, item tag, option name, or custom name assigned to the node.

= Compute - The compute assigned to the node (for example, "field_1.value + field 2.value"). The
result of the compute will be stored in the literal of the node.

Depending on the node type, some or even all of these properties may be null.

The Node Hierarchy
Every nodeis part of an overall hierarchy that describes the complete form. This hierarchy follows a
standard tree structure, with the top of the tree being the top (or root) of the hierarchy.
The diagram on the following page illustrates the typical tree structure for asimple form.
The elements of the hierarchy, in descending order, are:
s Form —Each form has one form level node. Thisisthe root node of the tree.

= Page- Each forms contains pages, which are represented as children of the form node. Each form
has at least two page hodes — one for the global page, which stores the global settings, and one for
the first page of the form.

= |tem —Each page containsitems, which are represented as children of the page node. An item node
is created for each item, including the global item which stores page settings.

= Option — Each item contains options, which are represented as children of theitem node. An option
node is created for each option.

= Argument —Options often contain further settings, or arguments, which are represented as children
of the option node or as children of other argument nodes. There is often more than one level of
argument node created below an option node, depending on the option’s settings. The easiest way

8 |

References

to access a particular node in the hierarchy isto use areference. References allow you to locate a

specific node without first having to locate the parent of that node.

Sample Form

Hierarchy

INININIYY

=
L=
=
=
LEGEND
TYPE | IDENTIFER
-
s PAGE | GLOBAL PAGE | PAGE1
m LITERAL |COMPUTE
H GLOBAL | GLOBAL | | GLOBAL | GLOBAL LINE | REFLINE LABEL | LABEL 1 LABEL |LABEL 2
=
S VERSION Size VALUE VALUE o
= LOCATION
(=)
= 45.0 HELLO WORLD
20

References

References allow you to identify a specific page, item, option, or argument by providing a“path” to that
element. This means that you can access an element directly without having to locate any of its
ancestors. The syntax of areference follows this general pattern:

References | 9

page.item option[argunent]

Each element of the reference is constructed as follows:

s Pageand Item — Pages and items are identified by their scope identifiers (sid). For example,
Pagel or Fieldl.

= Options— Options are identified by their tag name. For example, value or itemlocation.

= Arguments — Arguments are typicaly identified by a zero-based numeric index, but may aso be
identified by their tag name if that name is unique within the scope of their parent. Argument
references are always enclosed in brackets. For example, [1] or [message].

Arguments can also have any depth. For example, you might have an argument that contains
arguments. You can reference additional levels of depth by adding another bracketed reference. For
example, to refer to the first argument in the first argument, you would use [0][0].

You can create referencesto any level of the node hierarchy. For example, the following tableillustrates
anumber of references starting at different levels of the form:

Start At Ref to Page Refto ltem Refto Option Ref to Argument

Page Pagel Pagel.Fieldl Pagel.Fieldl.format Pagel.Fieldl.formatimessage]
ltem — Fieldl Field1l.format Fieldl.format[message]
Option — — format format[message]

Argument — — — [message]

Dereferencing

When making a reference to an item node, there may be times when you do not know which node to
reference because it depends on some action from the user of the form. Consider a situation in which a
user selects a cell from alist. Because you don’'t know beforehand which cell the user will choose, it is
not possible to explicitly reference the item node for the chosen cell. In such cases you would use
dereferencing to retrieve the node indirectly.

Essentially, dereferencing allows you to make a dynamic reference that is evaluated at runtime. Thisis
accomplished by placing the -> symbol to the right of the dynamic reference.

For example, consider alist item called List1 that has three cells called Cell1, Cell2, Cell3. If you
wanted to access the item node of the cell selected by the user, we would use the following reference
string:

Li st 1. val ue->
At runtime, the portion of the expression that isto the left of the dereference symbal is evaluated and
replaced. If the user chose the second cell, List1.value would be evaluated and replaced with:

Cel | 2

As aresult, the item node for Cell2 would be returned.

In some cases, instead of accessing the item node of the chosen cell, you may want to access one of the
cell’s option nodes. Again, dereferencing is used. The reference string would be:

10 |

References

Li st 1. val ue->val ue

As before, the above expression is evaluated at runtime. The expression to the left of the dereference
symbol is evaluated and replaced, just as before. So if the second cell was selected, Listl.value would
be evaluated as Cell2. Thisvalueisthen concatenated with the expression to the right of the dereference
symbol. Thiswould produce:

Cel | 2. val ue

Asaresult, the option node for Cell2.value would be returned.

Note: Do not include any spaces before or after the dereference symbol (->).

Namespace in References

References that include options or arguments in any namespace other than XFDL normally require the
inclusion of the namespace prefix in the reference. For example, if you were referencing “myOption” in
the “custom” namespace, you would refer to that option as “ custom:myOption” as shown:

page_1. nyltem cust om nyQpti on

If you are referencing named arguments, you should also use the appropriate namespace. For example:
page_1. nyltem cust om nyQpti on[cust om nmyAr gunent]

However, if you are referencing an argument by index number you do not need to worry about

namespace. All arguments, regardless of namespace, are indexed in order. For example, if “myOption”

contained two arguments, the first in the XFDL namespace and the second in the custom namespace,
you would use the following reference for the second argument:

page_1. nyltem custom nyQOpti on[1]

Note: Page and item references never require a namespace prefix because they are uniquely
identified by their sid.

The null Namespace

In some cases, forms may have no default namespace or may have a default namespace that is expicitly
set to an empty string. In these cases, you can use null as the prefix for the empty namespace. For
example, the following field declares a default namespace that is empty:
<page si d="Pagel">
<field sid="nyField" xmns="">
<val ue>Test Val ue</val ue>
</field>
</ page>

In this case, to reference the value of the field, you would use the null prefix as shown:

Pagel. nul | : nyFi el d. nul | : val ue

Advanced Information about the Node Structure | 11

Advanced Information about the Node Structure

When an XFDL form is stored in memory, it exists as a series of nodes that are linked in atree structure.
Asdescribed in “The Node Hierarchy” on page 7, the tree structure follows this hierarchy: form, page,
item, option, and argument.

Within a single branch of the tree, al elements of the same level are treated as siblings, each of which
has a common parent, and each of which may have its own children.

Thefollowing exampleillustrates the node structure of asimple form, and gives atop-down description
of the node structure.

A Sample Hierarchy

Thefollowing XFDL code creates the node hierarchy shown on page 8. The result is a simple form that
contains three items (aline and two labels).

<?xm version = "1.0"?>
<XFDL xm ns="http://ww. Pur eEdge. com XFDL/ 6. 0"
xm ns: xfdl ="http://ww. Pur eEdge. conml XFDL/ 6. 0" >

<gl obal page si d="gl obal ">
<gl obal si d="gl obal "></ gl obal >
</ gl obal page>

<page sid = "PAGEl">
<gl obal si d="gl obal "></gl obal >

<line sid = "REFLI NE">
<si ze>
<ae>20</ ae>
<ae>0</ ae>
</size>
</line>

<l abel sid = "LABEL1">
<val ue>Hel | o</ val ue>
</ | abel >

<l abel sid = "LABEL2">
<val ue>Wor | d</ val ue>
<iten ocation>
<ae>
<ae>after</ae>
<ae>LABEL1</ ae>
</ ae>
<ae>
<ae>expandr 2r </ ae>
<ae>REFLI NE</ ae>
</ ae>
</item ocati on>
</ | abel >

12 | Advanced Information about the Node Structure

</ page>

</ XFDL>

The Sample Tree Structure

Each tree begins with the form, or root, node. This node contains no information — it simply represents
the starting point of the tree structure.

Below the form node are the page nodes. In the previous example, there are two page nodes: “ global”
and “PAGEL". The“global” page node stores any global settings that apply to the form while “PAGEL”
stores the contents of the first form page. Any additional pages would also be stored as children of the
form node.

Below each page node are the item nodes. Asillustrated in the previous example, thefirst item node for
any page is awaysthe “global” item. The “global” item stores any page settings that are applied to the
itemsin that page. Each additional item in the page is stored as a sibling of the global item.

Note: The“global” page node will always have one child: the global item. This global item will
always store the XFDL version number used to create the form, and is also used to store any global
settings that are applied to the form.

Below each item node are the option nodes. Each option node represents an option setting for that item,
such as a background color or font setting.

Below each option node are the argument nodes. These nodes contain the settings for the parent option.
For example, the background color might be set to “blue”. There can be an infinite number and depth of
these nodes, depending upon the number and depth of the settings for that option.

For example, in the sample form, the size node for “REFLINE” has two argument nodes: one for the
width and one for the height. In contrast, the itemlocation node for “LABEL2” has two argument nodes
which themselves have argument nodes as children. The following is an example of the node structure
of the itemlocation option:

<item ocati on>

<ae> <«—— argunent node level |
<ae>after</ae> <4——— argunent node level Il
<ae>LABEL1</ ae> <4«—— argument node level 11

</ ae>

<ae> <4— argunent node |evel |
<ae>expandr 2r</ ae> <«— argunment node |evel ||
<ae>REFLI NE</ ae> <4———— argunent node |level Il

</ ae>

</item ocation>

Advanced Information about the Node Structure | 13

itemlocation Node Structure

itemlocation

argument node level |

argument node
REFLINE expandr2r LABEL1 after level Il

Thus, in storing the itemlocation option, two levels of argument nodes are created. Thefirst level
describes the number of array elementsin the option (two). The second level gives the arguments for
each element (the modifier and the reference item).

Dueto their potential complexity, pay careful attention to the mapping of argument nodes.

Note: In caseswhere an option has multiple elementsin an array (for example, itemlocation), there
will be a single option node, but a separate argument node for each element in the array.

Node Properties

There are several levels of nodesin an XFDL form: form (or root), page, item, option, and argument
(which can have an infinite number of levels). Each node hasfour properties: literal, type, identifier, and
compute. A node does not necessarily contain information for every property.

For example, a page node can never have values for the compute or literal properties. And while avalue
for the user data property is optional, a page node must always have values for the type and identifier
properties.

The following table illustrates what properties may be in use for each node level.

Node Property

Level Literal Type Identifier Compute yes = node can
have that

Form no no no no property

Page no always always no always = node
always hasthat

ltem no always always no property

Option yes no always yes no = node
cannot have

Argument that property

(at any level) |Y€S no yes yes

14 | Advanced Information about the Node Structure

Introduction to the Form Library | 15

Introduction to the Form Library

The Form Library isacollection of methods that can be used in devel oping applications that manipulate
XFDL forms. Using the methods in the Form Library, your applications can:

» Read and write forms.

= Retrieve information contained in aform’s e ements.

= Assigninformation to the elements of aform.

= Create new elements within aform.

= Remove elements from aform.

= Extract images or enclosures from aform.

Essentially, an XFDL form may be thought of as a structured data type, with the API as the means for
accessing this data structure.

About the Form Library

How the Form and FCI Libraries Work Together

The FCI Library is a collection of methods for devel oping custom-built functions that form devel opers
may call from XFDL forms. Methodsin the FCI Library will allow you to create and distribute
packages of functionsfor forms. For more information about the FCI methods refer to the section called
“Introduction to the FCI Library” on page 163.

You can use Form methods along with Java system methods and other FCI methods to implement the
details of each function you create using the FCI Library.

The Form Classes

The Form Library is composed of the following classes:

Class Description

DTK The DTK class encapsulates methods that apply to the ICS
API as a whole.

FormNodeP The FormNodeP class encapsulates methods that apply to
particular form nodes.

XFDL The XFDL class encapsulates methods that create

FormNodeP objects as well as an assortment of other
methods.

UWIException

The UWIException class encapsulates the error handling
mechanism. The API detects all errors by throwing a
UWIException object, which is a subclass of the Java
Exception class.

16 | About the Form Library

Using Signatures with the Form Library

If an option contains a compute element then it may also contain the current computed value of the
option.

Once an option has been digitally signed, it maintains the signed literal value of the option. Once
signed, this value will not change, even if the option setting is aformula.

Theliteral value is stored as simple character data in the computed option, as shown below:

<field sid="FI ELDL">
<val ue conpute = 'pagel. naneFi el d. val ue’ >Jane E. Snith</val ue>

</field>

The node structure for the value option specified above is:

field FIELD1
Jane E. Smith value
Pagel.nameField.value

The Viewer setsthisliteral value when aformis signed, submitted, or saved (and discards any old value
if necessary). When readForm isinvoked, the current value is set and cannot be changed. Because a
digitally signed formula never fires after being signed, the current value for the option is aways the
same — and therefore it is possible to reference the option and get the signed literal value.

Getting Started with the Form Library | 17

Getting Started with the Form Library

This section provides a detailed tutorial to help you understand how to use the Form Library. By
working through the tutorial, you will perform all the stepsinvolved in creating a simple application
that uses methods from the Form Library to interact with an XFDL form.

The sample application in this tutorial reads an input form called calculateAge.xfd into memory. It
retrieves from specific input fields the user’s birth day, month, and year as well asthe current date. It
then places these values into hidden fields in the form. This triggers the form to compute the user’s age
and display the result. When complete, the application saves the changes made to .xfd as anew form
called Output.xfd.

Note: The sample application described in thistutorial isincluded with the API and can befound in
thefolder: <API Program Folder>\Samples\Java\For m\Demo\Cal culate_Age\. The API also includes
a longer sample application that demonstrates other Form Library methods. This sample and the
XFDL formto use with it are located in the folder: <API Program Folder>\Samples\Java\Form\
Demo\ Sample_Application\.

Thetutoria is divided into the following topics:

Procedure Page
Setting up Your Application 17
Initializing the API 19
Loading a Form 19
Retrieving a Value from a Form 20
Setting Values in a Form 21
Writing a Form to Disk 21
Closing a Form 22
Compiling Your Application 22
Distributing Your Application 22

Note: Before you can build applications using the ICSAPI, you must install the API and set up your
devel opment environment. Refer to the ICS API Installation and Setup Guide for more information.

Setting up Your Application
Aswith any Java application, you must begin by importing the necessary classes and defining the
program’s classes.
1. Create anew Javasourcefile called calculateAge.java.
2. Any program that calls methods from the ICS API must import the following classes:

18 |

Setting up Your Application

i mport com Pur eEdge. DTK;

i mport com Pur eEdge. xf dl . For mNodeP;

i nport com Pur eEdge. xfdl . XFDL;

i mport com Pur eEdge. error. UN Excepti on;
i nport com Pur eEdge. | FSSi ngl et on;

You must place these lines before any class or interface definitions.

3. Set uptherest of your application. This generally includes defining any classes and methods for
your application aswell as declaring and initializing any variables you may need. The following
code sets up the Calculate Age application:

Create the public class CalculateAge and the main method for the class.
public class Cal cul at eAge

{

Declare a FormNodeP object called theFor m to represent the form.

private static FornNodeP theForm

Create the program’s main method.

public static void main(String argv[])

{

Declare the program’s variables.

int birthYear;
int birthMnth;
i nt birthDay;

The program’s main method essentially consists of a series of calls to other methods. The
Form Library methods are called from the definition of these methods.

try

{
initialize();
| oadForm();
birthYear = getBirthYear();
birthMonth = getBirthMnth();
birthDay = getBirthDay();
setBirt hYear (birthYear);
set Bi rt hMont h(bi rt hMont h) ;
set Bi rt hDay(bi rt hDay) ;

saveForm();

Free the memory in which the form was stored. For more information see “ Closing a Form” on

page 22.

t heForm destroy();
}

Finally, perform exception handling.

Initializing the ICS API | 19

catch (Exception ex)

{
}

ex. printStackTrace();

/* Additional code renoved */

Initializing the ICS API

Any application that uses APl methods must initialize the ICS API to ensure correct error and memory
handling behavior. The sample application does thisin a separate method called initialize. In turn,
initialize calls the Form Library method DTK .initialize and passes it the name of the current program,
as shown below:

private static void initialize() throws UW Exception

{
}

DTK.initialize("cal cul ateAge", "1.0.0", "4.5.0");

Note: For detailed information about the initialize method, including a description of its
parameters, refer to page 36.

Loading a Form

Before your program can begin working with aform, you must load it into memory. CalculateAge does
this by defining aloadFor m method to handle these tasks.

private static void | oadForm() throws Exception
{

4. Beforeyou canload the form, declare the XFDL object:
XFDL t heXFDL;

5. UselFSSingleton.getXFDL to assign the XFDL object to theXFDL. This allows you to access
the root node of the form.

theXFDL = | FSSi ngl et on. get XFDL() ;

i f(theXFDL == nul)
t hrow new Exception("Could not find interface");

= TheloadForm method uses the Form Library method readForm to load the forminto
memory. Before you can use readForm you must retrieve the XFDL object.

6. Cadl the APl method readForm to load the form into memory. The method returns a reference to
the root node of the form.

20 | Retrieving a Value from a Form

t heForm = t heXFDL. r eadFor m(" cal cul at eAge. xfd", 0);
}

= Theargument “calculateAge.xfd” isthe name of the form to read from the local drive.

Note: For more information about the readForm method, refer to page 159.

Retrieving a Value from a Form

Once you have set up and initialized your application with the ICS API and loaded aform into memory,
your application is ready to start working with the form. The following code defines the getBirthDay
method to retrieve a specific value from the form calculateAge.xfd. It does this by using the Form
Library method getL iter al ByRefEX.

7. Define the method getBirthDay and a string variable called temp.

private static int getBirthDay() throws Exception

{
String tenp;

8. Cadl getLiteralByRefEX to retrieve the literal information contained in the form node

PAGE1.BIRTHDAY.value

tenp = theForm getLiteral ByRef Ex(nul |, "PAGELl. Bl RTHDAY. val ue", 0,
null, null);

Note: For detailed information about the getLiteral ByRefEx method, including a description of its
parameters, refer to page 70.

= |f themethod returnsalitera value, convert it into an integer value; otherwise, indicate that no
value was entered into the field and throw an exception.

if (temp.length() > 0)

{
return I nteger.parselnt(tenp);
}
el se
{
t hrow new UW Exception("The birth day was not entered.");
}

}

9. Definethe following methods to retrieve the user’s birth month and year from the input form.
These methods will be exactly the same as getBirthDay except for the parameters passed to
getL iteralByRefEX.

= getBirthMonth() —retrieves the value PAGE1.BIRTHMONTH.value from theFor m.
= getBirthYear() —retrieves the value PAGE1.BIRTHYEAR..value from theForm.

Setting Values ina Form | 21

Setting Values in a Form

This section demonstrates how to assign values to form elements. To do this, use the Form Library
method setL iter alByRefEX, as shown below:

10. Define the method setBirthDay and an integer variable to reference the user’s day of birth.

private static void setBirthDay(int birDay) throws Exception
{

I nt eger day = new I nt eger (birDay);
11. Call the method setLiter al ByRefEx to assign the user’s day of birth to the form’s hidden day field.

t heForm set Li t eral ByRef Ex(nul | , " PAGEL. H DDENDAY. val ue", 0,
null, null, day.toString());

Note: For detailed information about the setl iteralByRefEx method, including a description of its
parameters, refer to page 111.

12. Define the remaining methods to set the user’s birth month and year in the form’s hidden fields.
These methods will be exactly the same as setBirthDay except for the parameters passed to
getLiteralByRefEX.

» setBirthMonth() — sets the value PAGE1.HIDDENMONTH.valuein theFor m.
» setBirthYear () — setsthe value PAGEL1.HIDDENYEAR.value from theFor m.

Writing a Form to Disk

Once you have finished making the desired changes to the form, you should save it to disk. If you want
to retain the origina form (calculateAge.xfd), you should save the modified form under a new name.
This program saves the modified form as Output.xfd.

13. Define the method saveFor m. This method demonstrates the use of the For mNodeP method
writeForm.

private static void saveFornm) throws UW Exception

{

14. Call the Form method writeForm and pass it the new name of the form.

theForm writeForn{"Qutput.xfd", null, 0);

Note: For detailed information about the writeForm method, including a description of its
parameters, refer to page 127.

22 |

Closing a Form

Closing a Form

Remember that the object called theFor m is areference to the root node of the form. Since the program
no longer needs the form, you can free this memory for other uses by using the API’s destroy method.
This method deletes from memory the root node of the form and all of its children (in other words, the
complete form).

15. The program’s main method calls the API’s destroy method to del ete theForm object.

t heForm destroy();

Note: For detailed information about the destroy method, including a description of its parameters,
refer to “ destroy” on page 49.

= Display any exceptions before terminating.

catch (Exception ex)

{
}

ex. print StackTrace();

Compiling Your Application

Once you have generated the Java source files for your application, you must compile the source code.

» UseaJavacompiler that is supported by this API to compile your Javafiles. Refer to the ICS API
Installation and Setup Guide for more information about compatible devel opment environments.

= Beforebuilding your application you should have a .javafile that represents your application. After
compiling the .javafile you will have afile with the same name as the .java file but with the
extension .class.

= For example, after compiling the source code for the application calculateAge.java your Java
compiler will create a corresponding file: calculateAge.class

= Thedetails of compiling your source code are not included in this manual. Consult your Java
documentation for specific information on how to use your Java compiler.

Distributing Applications That Use Form Methods

32-hit applications that use methods from the ICS API will run on any computer that supports the Java
Runtime Environment or the Microsoft Software Development Kit For Javav3.1 or |ater.

Summary | 23

If you distribute applications that use ICS APl methods, you will also need to distribute a number of
API files. Refer to the ICS API Installation and Setup Guide for information on distributing applications

that use the Form Library.

Summary

By working through this section you have successfully built the Calculate Age application. In the
process, you have learned how to initialize and compile form applications and use the following
methods from the APl method library:

= initialize = getXFDL

= readForm = QetLiteralByRefEx

n setliteralByRefEx = writeForm

= destroy

For alonger example using the Form Library of methods, refer to the sample application
formSamplejava available in the folder: <API Program Folder>\Samples\Java\Form\Demo\

Sample_Application. This folder also contains the source code for the corresponding sample form
formSample.xfd.

24 | Summary

Form Library Quick Reference Guide | 25

Form Library Quick Reference Guide

This section provides detailed information on the structure of the Form Library. After an introduction to
the classes in the API, FormNodeP objects, and constants, a quick reference section describes each
method in detail.

The quick reference includes a separate section for each classin the API:
= “TheDTK Class’ on page 35.

= “ThelFSSingleton Class’ on page 135.

= “The XFDL Class’ on page 151.

s “The FormNodeP Class’ on page 39.

s “The Certificate Class’ on page 29.

s “TheHash Class’ on page 131.

s “The SecurityManager Class’ on page 143.

= “The Signature Class’ on page 145.

= “TheLocalizationManager Class’ on page 141.

Within each section, the methods are presented alphabetically.

ICS API Classes and Methods

The Form Library consists of the following classes and methods:

Class Description Methods
Certificate The Certificate class include a method getDataByPath
for getting information about digital

certificates.

DTK The DTK class encapsulates methods initialize
that apply to the ICS API as a whole.

FormNodeP The FormNodeP class encapsulates addNamespace
methods that apply to particular form createCell
nodes. deleteSignature

dereferenceEx
destroy
duplicate
encloseFile
encloselnstance
extractFile
extractinstance
getAttribute
getAttributeList
getCertificateList
getChildren
getinfoEx

getLiteralEx

26 |

ICS API Classes and Methods

Class

Description

Methods

FormNodeP (cont)

The FormNodeP class encapsulates
methods that apply to particular form

nodes.

getLiteralByRefEx
getLocalName
getNamespaceURI
getNamespaceURIFromPrefix
getNext

getNodeType

getParent

getPrefix
getPrefixFromNamespaceURI
getPrevious

getReferenceEx
getSecurityEngineName
getSigLockCount
getSignature
getSignatureVerificationStatus
isXFDL

removeAttribute
removeEnclosure
setActiveForComputationalSystem
setAttribute

setFormula

setLiteralEx
setLiteralByRefEx

signForm
validateHMACWithSecret
validateHMACWithHashedSecret
verifyAllSignatures
verifySignature

writeForm
Hash The Hash class includes a method for hash
hashing strings.
IFSSingleton The IFSSingleton class provides a getFunctionCallManager

static interface to XFDL objects.

getLocalizationManager
getSecurityManager
getXFDL

LocalizationManager

The LocalizationManager class

includes a method for setting the locale

(language) that the API uses.

setDefaultLocale

SecurityManager

The SecurityManager class includes a

method for obtaining a hashing
alogorithm.

lookupHashAlgorithm

Signature

The Signature class includes a method
for getting information about signature

objects.

getDataByPath

XFDL

The XFDL class encapsulates methods

that relate to FormNodeP objects.

create
getEngineCertificateList
isDigitalSignaturesAvailable
readForm

About the Method Descriptions | 27

About the Method Descriptions

The methods in this reference guide are listed according to the class they belong to and are described
using the following format:

= Description: Providesageneral description of what the method does.

= Method: Liststhe method's signature and type of value returned (if any).
= Parameters. Lists and describes each parameter in detail .

= Returns: Indicates what value is returned by the method.

= Notes: Provides additional information to help you use the method.

= Example: Provides sample code that uses the method in question.

About Specified Object Nodes

In the following method descriptions, the term “ specified object node” refers to the node or object on
which amethod is being invoked. For instance, in the call theForm.destroy(), the object called theForm
is the node which is passed to destroy for processing.

28 | About Specified Object Nodes

The Certificate Class | 29

The Certificate Class

The Certificate class allows you to get information from Certificate objects.

= Any application that makes calls to the Certificate methods must first import the following class:
com Pur eEdge. security.Certificate

= Many of the methodsin the ICS API will throw a generic exception called a UW I Exception if an
error occurs. Import the following class to any .javafiles that call methods from the ICS API:

com Pur eEdge. error. UN Excepti on

30 |

getDataByPath com.PureEdge.security.Certificate
getDataByPath
Description
This function retrieves a piece of data from a certificate object.
Method
public String getDataByPath(
Sring thePath,
boolean tagData,
BooleanHolder encoded,
) throws UWI Exception;
Parameters
Expression Type Description
thePath String The path to the data you want to retrieve. See the
Notes section below for more information on data
paths.
tagData boolean True if the path should be prepended to the data. If the
path is prepended, a colon and space are used as a
separator.
For example, suppose the path is “Issuer: CN” and the
data is “PureEdge”. If true, the path will be prepended,
producing “Issuer: CN: PureEdge”. If false, the path
will not be prepended, and the result will be
“PureEdge”.
encoded BooleanHolder True if the return data is base 64 encoded. The function
returns binary data in base 64 encoding.
Notes

About Data Paths

Data paths describe the location of information within a certificate, just like file paths describe the
location of files on adisk. You describe the path with a series of colon separated tags. Each tag
represents either apiece of data, or an object that contains further pieces of data (just like directories can

contain files and subdirectories).

For example, to retrieve the version of a certificate, you would use the following data path:

version

com.PureEdge.security.Certificate getDataByPath | 31

However, to retrieve the subject’s common name, you first need to locate the subject, then the common
name within the subject, as follows:

Subj ect: CN
Some tags may contain more than one piece of information. For example, the issuer’s organizational

unit may contain a number of entries. You can either retrieve al of the entries as acomma separated list,
or you can specify a specific entry by using a zero-based element number.

For example, the following path would retrieve a comma separated list:

| ssuer: UO

While adding an element number of 0 would retrieve the first organizational unit in the list, as shown:
Issuer: UO O

Certificate Tags

The following table lists the tags available in a certificate object:

Tag Description

Subject The subject’s distinguished name. This is an object that contains further
information, as detailed in Distinguished Name Tags.

Issuer The issuer’s distinguished name. This is an object that contains further
information, as detailed in Distinguished Name Tags.

IssuerCert The issuer’s certificate. This is an object that contains the complete list of
certificate tags.

Engine The security engine that generated the certificate. This is an object that contains
further information, as detailed in Security Engine Tags.

Version The certificate version.

BeginDate The date on which the certificate became valid.
EndDate The date on which the certificate expires.

Serial The certificate’s serial number.

SignatureAlg The signature algorithm used to sign the certificate.
PublicKey The certificate’s public key.

FriendlyName The certificate’s friendly name.

Distinguished Name Tags

The following table lists the tags available in a distinguished name object:

Tag Description

CN The common name.

E The email address.

32 |

getDataByPath

com.PureEdge.security.Certificate

Tag Description
The title.
@) The organization.
ou The organizational unit.
C The country.
The locality.
ST The state.
All The entire distinguished name.

Security Engine Tags

The following table lists the tags avail able in the security engine object:

Tag

Description

Name

The name of the security engine.

Help

The help text for the security engine.

HashAlg

A has algorithm supported by the security engine.

Returns

A string containing the certificate data (null if no datais found), or throws a generic exception
(UWIException) if an error occurs.

Example

The following function uses der efer enceEx to locate a signature button in the form. It then uses
getCertificatelL ist to get alist of valid certificates for that button. Next, the function cycles through the
returned certificates, uses getDataByPath to get the common name for each certificate, and identifies
the certificate with a common name of “PureEdge Server”. Finally, the function uses signForm to sign
the form with the server’s certificate.

publ
{

ic void serverSi gn(FornNodeP form throws UW Exception

| nt Hol der t heSt at us;
For mNodeP but t onNode;

Cert

ificate [] certlList;

Si gnat ure theSi gnature;

Stri
bool
int
int
i nt

ng si gner ConmonNane;
ean encodedResul t;
cert Count;
correctCert = -1;

15

if ((buttonNode = theForm dereferenceEx(null, "PAGEL. SI GBUTTONL",

0, FornNodeP. UFL_I TEM REFERENCE, null)) == null)

com.PureEdge.security.Certificate getDataByPath | 33

{
}

theStatus = new I ntHol der();

t hrow new UW Exception("Coul d not |ocate SIGBUTTONL node.");

certlList = buttonNode.getCertificateList(null, theStatus);

if (theStatus.value == SecurityUser StatusType. SUSTATUS | NPUT_REQUI RED)
{

}

t hrow new UW Exception("User input required to sign form");

cert Count = certlList.|ength;
encodedResult = new Bool eanHol der;

for (i=0; i<certCount; i++)

{
si gner CormonName = certList[i].getDataByPat h("Subject: CN', fal se,
encodedResul t);
i f (signerConmonNane. equal s(" PureEdge Server"))
{
correctCert = i;
br eak;
}
}
if (correctCert == -1)
{
t hrow new UW Exception("Could not |ocate required certificate");
}

t heSi gnature = buttonNode. si gnForm(certList[correctCert], null,
t heSt at us) ;

if (theStatus.value == SUSTATUS | NPUT_REQUI RED)
{

}

t hrow new UW Exception("User input required to sign form");

34 | getDataByPath com.PureEdge.security.Certificate

The DTK Class | 35

The DTK Class

The DTK class encapsulates a method that initializes the ICS API.

= You must import the following class to any .javafilesthat call this DTK method:
com Pur eEdge. DTK

= Many of the methods used in the ICS API will throw ageneric exception called aUW |1 Exception if
an error occurs. Import the following classto any .javafilesthat call Form methods:
com Pur eEdge. error. UN Excepti on

= Before using any Form methods you must first initialize the Form Library. Use the initialize
method to perform thisinitialization.

36 | initialize

initialize

Description

com.PureEdge.DTK

This static method initializes the API. The parameters specify which version of the API your application
should bind with (see the Notes below for more details).

You must call this method before calling any of the other methods in the API.

Method
public static void initialize(
Sring progName,
Sring prog\Ver,
Sring apiVer
) throws UWI Exception;
Parameters
Expression Type Description
progName String The name of the application calling initialize. This hame is
used to identify the application within the .ini file.
progVer String The version number of the application calling initialize. If
the .ini file has an entry for this version of the application,
the application will bind to the version of the API listed in
that entry.
apiVer String The version number of the API the application should use
by default. If the .ini file does not contain an entry for the
specific application, the application will bind to the API
specified by this parameter.
Returns
Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.
Notes

initialize is a static method belonging to the DTK class, to use this method call:

DTK.initialize("progNane",

"progVer", "apiVer")

com.PureEdge.DTK initialize | 37

About Binding Your Applications to the API

When you initialize the API, the initialize method determines which version of the API to use based on
the parameters you passit. This allows you to exercise agreat deal of control over which version of the
API isused by your applications, and prevents the problems normally associated with common DLL
files (often referred to as“DLL hell”).

initialize uses a configuration file to determine which version of the API will bind to any application.
This allows multiple versions of the API to co-exist on your computer, and ensures that your
applications use the correct version of the API.

The configuration fileis called PureEdgeAP!.ini and isinstalled with the API. Refer to the ICSAPI
Installation and Setup Guide for the exact location of thefile.

Note: You should redistribute the PureEdgeAPl.ini file with any applications that use the API. See
the ICS API Installation and Setup Guide for more information about redistributing applications.

The configuration file contains a section for each application that might call the API, plus a default
“API” section. Each section contains alist of version numbers in the following format:

<version of application> = <fol der containing appropriate version of APl >

For example, the configuration file might look like this:

[API]

5.1.0 = 51

5.0.0 = 50

[Cust omAppl i cati on]
1.1.0 = 51

1.0.0 = 50

Inthis case, the folder indicated on the right hand side of each statement is part of therelative path to the
API, and assumes the API was installed in the default folder. For example, under Windows “50” would
resolveto:

c:\ W nNT\ Syst enBB2\ Pur eEdge\ 50
You can also specify an absolute path by placing adrive |etter before the path. For example, “c:\50”
would resolve to:

c:\ 50\

When you initialize the API, you include three parametersin the initialization call:
= The name of your application (as it would appear in the configuration file).

= Theversion of your application.

= Theversion of the API that your application should bind to by default.

Theinitiaization call will first check the configuration file to see if your application is listed. For
example, using the configuration file above, if you make an initialization call for “ CustomApplication”
version “1.1.0”, then the application binds to the API in the “51” folder.

If your application is not listed in the configuration file, theinitialization call uses the default version of
the API. For example, using the configuration file above, if you declare “5.1.0" as the default API, then
your application binds to the API inthe “51” folder.

38 | initialize com.PureEdge.DTK

You can add your own entries to the configuration file before distributing it to your customers, or you
can rely on the default API entries.

Note: initialize was introduced for version 4.5.0 of the API. Binding does not work in this manner
for earlier versions of the API. Do not include earlier versions of the API in the configuration file.

Example
In the exampl e bel ow, the static method DTK .initializeinitializesthe ICS API for the application called
formSample.
private static void initialize() throws UW Exception
{

DTK.initialize("fornmSanple", "1.0.0", "5.1.0");
}

The FormNodeP Class | 39

The FormNodeP Class

The FormNodeP class encapsul ates methods that apply to particular forms.

= Eachnodeinaform, regardless of itslevel in the node hierarchy, is represented by a FormNodeP
object. For more information about the node structure of an XFDL form refer to the section called
“Overview of the Form Structure” on page 7.

= Any application that makes calls to the For mNodeP methods must first import the following class:
com Pur eEdge. xf dl . For mNodeP

= Many of the methodsin the ICS API will throw a generic exception called a UW I Exception if an
error occurs. Import the following class to any .javafiles that call methods from the ICS API.

com Pur eEdge. error. UN Excepti on

40 | addNamespace

com.PureEdge.xfdl.FormNodeP

addNamespace

Description

Method

This method adds a namespace declaration to the beginning of the form, and can be called from any
node.

Each namespace is defined in the form in the by a namespace declaration, as shown:
xm ns: xfdl ="http://ww. Pur eEdge. conmi XFDL/ 6. 0"
xm ns: custone"htt p: // ww. Pur eEdge. com XFDL/ Cust ont'

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://mmww.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField>
<cust om cust om opti on>val ue</ cust om cust om opti on>
</field>

public void addNamespace(
Sring theURI,
Sring thePrefix
) throws UWI Exception;

Parameters
Expression Type Description
theURI String The namespace URI. For example:
http://ww. PureEdge. coml XFDL/ 6. 0
thePrefix String The prefix for the namespace. For example, xfdl.
Returns

Nothing or throws a generic exception (UWIException) if an error occurs.

Example

The following method uses addNamespace to add a custom namespace to aform. It then locates the
global item in the global page and adds a custom option to that item which marks the status of the form
as “Processed”.

com.PureEdge.xfdl.FormNodeP addNamespace | 41

private static void addStat us(For mNodeP t heNode) throws Exception

{
XFDL t heXFDL;

/* Add the custom nanespace to the form */
t heNode. addNanmespace("htt p: // ww. Pur eEdge. coml XFDL/ Cust oni', "custoni');

/* Locate the global itemin the global page so we can add a gl obal
option. */

if (theNode = theNode. dereferenceEx(null, "global.global", O,
UFL_I TEM REFERENCE, null) == null)
t hrow new UW Exception("Coul d not | ocate global.global node.");

/* Get the XFDL object so we can create a new node. */

if (theXFDL = (XFDL) | FXMan. | ookupl nt erface(XFDL. XFDL_| NTERFACE_NAME,
XFDL. XFDL_CURRENT_VERSI ON, O, null, null)) == null)

t hrow new UW Exception("Could not find XFDL interface.";

/* Create a new option node as a child of the global item This node
is created in the custom nanespace, called "Status", and given a
val ue of "Processed". */

if (theNode = theXFDL. create(theNode, UFL_APPEND CHI LD, null,
"Processed", null, "custom Status") == null)
t hrow new UW Exception("Could not create Status node.");

42 | createCell com.PureEdge.xfdl.FormNodeP

createCell

Description

Use this method to create a new cell item for a combobox, list, or popup. createCell adds one new cell
to a specific group. Note that this method can only assign a name to the new cell; it cannot set the cell’s
value. To set the value of a cell, you must use the setLiter alByRefEx method.

Thismethod is called from a page level node, and creates the new cell in that page. Note that you cannot
call this method from the global page node.

Method

public FormNodeP createCell(
Sring theCellName,
Sring theGroupName
) throws UWI Exception;

Parameters
Expression Type Description
theCellName String The name of the new cell being created.
theGroupName String The name of the group option in which the new cell will be
added.
Returns
A FormNodeP containing the new cell or throws a generic exception (UWIException) if an error
occurs.
Example

This sample code makes two calls to the createCell method to add two new cells to the same group:

private static void addCol orCel|ls (FormNodeP theForn) throws Exception

{
For mNodeP t heCel | ;
For mNodeP t hePage;

/* The FormNodeP cal |l ed t hePage contains the page in which the cell wll
be added. */

thePage = (theForm getChildren()).getNext();

theCell = thePage. createCel | ("ORANGE_CELL", " POPUP1_GROUP");

com.PureEdge.xfdl.FormNodeP createCell | 43

/* The call to setlLiteral ByRef Ex assigns the value Orange to the new cell.
*/

theCel |l .setLiteral ByRef Ex(null, "value", 0, null, null,

theCell = thePage. createCel | ("PURPLE_CELL ",
theCel | . setLiteral ByRef Ex(nul |,

"Orange");
" POPUP1_CGROUP") ;
"value", O, null, null, "Purple");

44 | deleteSignature com.PureEdge.xfdl.FormNodeP

deleteSignature

Description

This method acts on the root node of aform (FormNodeP object) to delete adigital signature
represented by the signatureltem within the form. Several criteria must be met before thisis allowed.
None of the following should be locked by another signature: the signature, its descendants, the
associated signature button, and its signer option. If these criteria are met, then the signature’s locks are
removed, and the signature item is deleted. Then, the signer of the associated signature button is set to

empty (*).
Method
public void deleteSignatur g
FormNodeP signatureltem
) throws UWI Exception;
Parameters
Expression Type Description
signatureltem FormNodeP The signature to delete.
Returns
Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.
Example

In the following example, dereferenceis used to locate the signature node. deleteSignatureisthen
used to delete the signature from the form.

private static void del eteSi gnature(fornNodeP theFornm) throws UW Exception

{
f or mMNodeP t enpNode;

bool ean | ayouti nf o;

/* Locate the signature node. */

I f((tempNode = theForm dereferenceEx(null, "PAGELlL.SId TEM", O,
f or mMNodeP. UFL_I TEM REFERENCE, null)) == null)

{
t hrow new UW Exception("Could not |ocate SIG TEM2 node");

}

/* Check to see if the signature contains a |layoutinfo option. Set
| ayoutinfo to true if it does or false if it does not. */

com.PureEdge.xfdl.FormNodeP deleteSignature | 45

| ayoutinfo = true;

| f (tenpNode. dereferenceEx(null, "layoutinfo", O,
f or MNodeP. UFL_OPTI ON_REFERENCE, null) == null)
| ayoutinfo = fal se;

/* Delete the signature. */

t heFor m del et eSi gnat ur e(t enpNode) ;

/* If the signature contained a |ayoutinfo option, destroy the
remai ni ng nodes. */

if (layoutinfo == true)

{
}

t enpNode. Dest roy();

46 |

dereferenceEx com.PureEdge.xfdl.FormNodeP
dereferenceEx
Description
This method locates a particular FormNodeP on the basis of areference string. The node that this
method operates on is used as the starting point of the search.
Method
public FormNodeP dereferenceEx(
Sring theScheme,
Sring theReference,
int theReferenceCode,
int referenceType,
FormNodeP theNSNode
) throws UWI Exception;
Parameters
Expression Type Description
theScheme String Reserved. This must be null.
theReference String The reference string.
theReferenceCode int Reserved. This must be 0.
referenceType int One of the following constants:

FormNodeP.UFL_OPTION_REFERENCE
FormNodeP.UFL_ITEM_REFERENCE
FormNodeP.UFL_PAGE_REFERENCE
FormNodeP.UFL_ARRAY_REFERENCE

If it is an option or argument reference, bitwise OR (|) with

one of:

FormNodeP.UFL_SEARCH
FormNodeP.UFL_SEARCH_AND_CREATE

theNSNode FormNodeP A node that is used to resolve the namespaces in
theReference parameter (see the note about namespace
below). Use null if the node that this method is operating on
has inherited the necessary namespaces.

com.PureEdge.xfdl.FormNodeP dereferenceEx | 47

Returns

The FormNodeP defined by the reference string or null if the referenced node does not exist and
UFL_SEARCH_AND_CREATE isnot specified. On error, the function throws a UW I Exception
object that describes the problem.

Notes

FormNodeP

Before you decide which FormNodeP to use as the specified object node, you should understand the
following:

1. TheFormNodeP supplied can never be more than one level in the hierarchy above the starting
point of the reference string. For example, if the reference string begins with an option, then the
FormNodeP can be no higher in the hierarchy than an item.

2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the
reference string, the function will attempt to locate a common ancestor. The function will locate the
ancestor of the FormNodeP that is one level in the hierarchy above the starting point of the
reference string. The function will then attempt to follow the reference string back down through
the hierarchy. If the reference string cannot be followed from the located ancestor (for example, if
the ancestor is not common to both the FormNodeP and the reference string), the function will fail.

For example, given a FormNodeP that represents field 1 and areference of field_2, the function
will access the page node above field_1, and will then try to locate field_2 below that node. If the
two fields were not on the same page, the function would fail.

Creating a Reference String

For more information about creating a reference string, see “References’ on page 8.

Determining Namespace

In some cases, you may want to use the der eferenceEx method to locate a node that does not have a
globally defined namespace. For example, consider the following form:

<l abel sid="Label 1">
<val ue>Fi el d1. pr ocessi ng: nyVal ue</ val ue>
</ | abel >
<field sid="Fieldl" xm ns: processi ng="URI">
<val ue></val ue>
<processi ng: myVal ue>10<pr ocessi ng: nyVal ue>
</field>

In this form, the processing namespace is declared in the Field1 node. Any elementswithin Field1 will
understand that namespace; however, elements outside of the scope of Field1 will not.

In cases like this, you will often start your search at a node that does not understand the namespace of
the node you are trying to locate. For example, you might want to locate the node referenced in the
value of Labell. Inthiscase, youwould first locate the Label1 value node and get itsliteral. Then, from
the Label1 value node, you would attempt to locate the processing: myValue node as shown:

Label 1Node. der ef erenceEx(nul |, "Fi el d1. processi ng: nyVal ue", 0,

48 | dereferenceEx com.PureEdge.xfdl.FormNodeP

For mNodeP. UFL_OPTI ON_REFERENCE, nul |)

In this example, the der eferenceEx method would fail. The method cannot properly resolve the
processing namespace because this namespace is not defined for the Label 1 value node. To correct this,
you must also provide a node that understands the processing namespace (in this case, any node in the
scope of Fieldl) asthe last parameter in the method:

Label 1Node. der ef erenceEx(nul |, "Fi el d1. processi ng: nyVal ue", 0,
For mNodeP. UFL_OPTI ON_REFERENCE, Fi el d1Node)

Example

The following sample code uses der efer enceEx to locate the node representing the field called
colorfield. It then uses detL iter al ByRef to change the value displayed by the field to Purple.

private static void changeColorField() throws Exception

{
For mNodeP t enpNode;

if ((tenpNode = theForm dereferenceEx(null, "PAGEl. COLORFI ELD', O,
For mNodeP. UFL_| TEM REFERENCE, null)) == null)

{

}
t empNode. set Li t eral ByRef Ex(nul | , "PAGELl. COLORFI ELD. VALUE", O,

null, null, "Purple");

t hrow new UW Exception("Coul d not | ocate COLORLABEL node.");

/* additional code renoved */

com.PureEdge.xfdl.FormNodeP

destroy

Description

This method destroys the specified object node, and all children of that FormNodeP. Destroying the
root node of aform destroys the entire form and frees that memaory.

Method

public void destroy() throws UWIException;

Parameters

There are no parameters for this method.

Returns

Nothing if call is successful or throws a generic exception (UW I Exception) if an error occurs.

Notes
Digital Signatures
Itisillegal to destroy asigned object, except in the case of destroying an entire signed form. Destroying
asigned object breaks the digital signature, resulting in an exception.

Example

In the following example, der eferenceEx is used to locate a particular node. destroy isthen used to
remove that node from the structure.

private static void renpveRadi os() throws UW Exception

{
For mNodeP t enpNode;

if ((tenpNode = theForm dereferenceEx(null, "PAGEl. MALERADI O', O,
For mMNodeP. UFL_I TEM REFERENCE, null)) == null)

{
t hrow new UW Exception("Coul d not | ocate MALERADI O node.");

}

t enpNode. destroy();

/* additional code renoved */

destroy | 49

50 | duplicate com.PureEdge.xfdl.FormNodeP
duplicate
Description
This method makes a copy of the specified object node. The duplicate node can be attached to any other
node as either asibling or a child, or can be stored as a separate node structure (that is, as a separate
form). The new node can also be assigned a new identifier, as indicated by the thel dentifier parameter.
All of the properties of the original node are duplicated, including any children and any namespace
settings.
Note: If you duplicate a node that isin a non-XFDL namespace, the namespace is copied as part of
the duplicated node, but is not set globally.
Method
public FormNodeP duplicate(
FormNodeP baseNode,
int where,
Sring theldentifier
) throws UWI Exception;
Parameters
Expression Type Description
baseNode FormNodeP The FormNodeP to which the duplicated node will be
attached. If null, the specified object node is used as the
baseNode.
where int A constant that describes the location relative to the supplied

baseNode in which the new node should be placed:

XFDL.UFL_APPEND_CHILD — adds the new node as the
last child of the baseNode.

XFDL.UFL_AFTER_SIBLING — adds the new node as a
sibling of the baseNode, placing it immediately after that node
in the form structure.

XFDL.UFL_BEFORE_SIBLING — adds the new node as a
sibling of the baseNode, placing it immediately before that
node in the form structure.

XFDL.UFL_ORPHAN — copies the node to a new form
structure, effectively creating a separate form.

com.PureEdge.xfdl.FormNodeP duplicate | 51

Expression Type Description

theldentifier String A new identifier for this node. If null, the same identifier as the
copied object’s is used.

Returns

The duplicate node or throws a generic exception (UWI Exception) if an error occurs.

Example

In the following example, der eferenceEx is used to locate a specific node. duplicate is then used to
duplicate that node.

private static void createMailing()throws UW Exception
{

For mNodeP t enpNode;

For mNodeP dupl i cat eNode;

if ((tenpNode = theForm dereferenceEx(null, "PAGELl. ADDRESSFIELD",
0, FornmNodeP. UFL_| TEM REFERENCE, null)) == null)
{
t hrow new UW Exception("Coul d not | ocate ADDRESSFI ELD node.");
}

if ((duplicateNode = tenpNode. dupli cate(tenpNode,
XFDL. UFL_AFTER_SI BLI NG "MAI LI NGFI ELD")) == nul|)

{
}

t hrow new UW Excepti on("Coul d not duplicate ADDRESSFI ELD node.");

52 | encloseFile com.PureEdge.xfdl.FormNodeP

encloseFile

Description

This method will enclose afilein aform. The file must be accessible on the local computer. The
FormNodeP may refer to either a page node or an item node. If the FormNodeP is a page node, the
method creates adataitem in that page to contain the enclosure. If the FormNodeP is an item node, it
must be a data item, and the method encloses the file in that node.

Thefileis enclosed using base64-gzip encoding.

Method
public FormNodeP encloseFileg(
Sring theFile,
Sring mimeType,
Sring dataGroup,
Sring identifier
) throws UWI Exception;
Parameters
Expression Type Description
theFile String This is the path to the file on the local drive that will be
enclosed in the form.
mimeType String This is the MIME type of the file. If null, the library will attempt
to find a suitable MIME type for the file.
dataGroup String This is the datagroup to which this file should belong. If null,
the datagroup option (if it exists) is not changed.
identifier String This is the identifier to assign to the new data item if one is
created. If null, the current name is used or a unique name is
automatically generated for the new data item.
Returns
Theitem FormNodeP that contains the enclosure or throws a generic exception (UWIException) if an
€error occurs.
Example

The following example demonstrates how to use encloseFile to enclose agraphicsfilein aform. First,
dereferenceEx is used to locate the node for the first page. Then, depending on the gender, encloseFile

com.PureEdge.xfdl.FormNodeP encloseFile | 53

is called to enclose one of two possible image files. Because the subject node is a page node,
encloseFile creates a new data node in which to store the imagefile.

private static void enclosePic(String theGender) throws Exception

{
For mNodePt enpNode;

if ((tenpNode = theForm dereferenceEx(null, "PAGEl", O,
For mNodeP. UFL_PAGE_REFERENCE, null)) == null)
t hrow new Exception("Could not find PAGELl.");

/* The follow ng | ogi c detenm nes whether the gender is "nmale" or "fenale".
*/

i f (theGender.equal s("nmale"))

{
if ((tenpNode = tenpNode. encl oseFile("nale.jpg", "inagel/jpeg",
nul I, "PlICDATA")) == null)
t hrow new Exception("Could not enclose imge file.");
}
el se
{

/* This call to encloseFile is sinmlar to the previous one. The only
difference is that it specifies a different image. */

if ((tenpNode = tenpNode. encl oseFile("fenmale.jpg", "imge/]jpeg",
nul I, "PICDATA")) == null)
t hrow new Exception("Could not enclose inmage file.");

54 |

encloselnstance

encloselnstance

Description

com.PureEdge.xfdl.FormNodeP

This method inserts information into the XML model. The method can insert either an entireinstance or
aportion of an instance, and can either append the new information or overwrite existing information.

Call this method on the root node of the form or an XML instance node.

Function

READING A FILE:

public void enclosel nstance(

Sring thelnstancel D,
Sring theFile,

int theFlags,

Sring theScheme,

Sring theRootReference,
FormNodeP theNSNode,
boolean replaceNode

) throws UWI Exception;

READING A STREAM:

public void enclosel nstance(

Sring thelnstancel D,

java.io.lnputStream theSream,

int theFlags,

Sring theScheme,

Sring theRootReference,
FormNodeP theNSNode,
boolean replaceNode

) throws UWI Exception;

com.PureEdge.xfdl.FormNodeP encloselnstance | 55

Parameters

Expression Type Description

thelnstancelD String The ID of the instance to work with. This is defined by
the id attribute of that node.
If the method is acting on the instance node you want
to work with, set this parameter to null.

theFile String The path to the file on the local drive that contains the
XML instance.

theStream java.io.InputStream The input stream that contains the instance data.

theFlags int Reserved. This must be 0.

theScheme String Reserved. Must be null.

theRoot String A reference to node you want to replace or append

Reference children to. This reference is relative to the instance
node.
Use null to default to the instance node.

theNSNode FormNodeP A node that inherits the namespaces used in the
reference. This node defines the namespaces for the
method. Use null if the node that this method is
operating on has inherited the necessary namespaces.

replaceNode boolean If true, the node specified by theRootReference is
replaced with data. If false, the data is appended as
the last child of theRootReference node.

Returns

Nothing if call is successful or throws a generic exception (UW I Exception) if an error occurs.

Example

The following example shows a method that takes the root node of aform and inserts an XML instance
called “data’.

private static voi d updat eDat al nst ance(For mNodeP t heForm throws Exception
{
t heFor m encl osel nst ance("dat a",
"c:\Instance Files\Personnel\tenpdata.dat", 0, null, null, null,
true);

56 | extractFile com.PureEdge.xfdl.FormNodeP

extractFile

Description

This method will extract an enclosure contained in the specified object node and saveit to afilethat is
accessible to the local computer. Note that this method does not remove the enclosure from the form.

Method
public void extractFile(
Sring thePath
) throws UWI Exception;
Parameters
Expression Type Description
thePath String This is a path showing where to store the file on the local
drive. Any existing file will be overwritten.
Returns
Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.
Example

In the following example, dereferenceEx is used to locate a specific dataitem node. extractFileisthen
used to write the image data to the local drive.

private static void exportlmge(FormNodeP theForm throws Exception

{
For mNodeP t enpNode;

if ((tenpNode = theForm dereferenceEx(null, "PAGEl. LOGODATA", O,
For mMNodeP. UFL_I TEM REFERENCE, null)) == null)

{
t hrow new UW Exception("Could not find LOGODATA node.");

}

tenpNode. extract Fil e("l ogo. j pg");

com.PureEdge.xfdl.FormNodeP extractinstance | 57

extractinstance

Description
This function copies an XML instance from aform’s XML model to afile. Note that this function does
not remove the instance from the form.

Call this method on the root node of the form or an XML instance node.

Function

WRITING TO A FILE:
public void extractl nstance(
Sring thelnstancel D,

FormNodeP theFilter,
Sring includedNamespaces,
Sring theFile,

int theFlags,

Sring theScheme,

Sring theRootReference,
FormNodeP theNSNode

) throws UWI Exception;

WRITING TO A STREAM:
public void extractl nstance(
Sring thelnstancel D,
FormNodeP theFilter,
Sring includedNamespaces,
java.io.OutputStream theSream,
int theFlags,
Sring theScheme,
Sring theRootReference,
FormNodeP theNSNode
) throws UWI Exception;

extractinstance

Parameters

com.PureEdge.xfdl.FormNodeP

Expression

Type

Description

thelnstancelD

String

The ID of the instance node to extract. This is defined
by the id attribute of that node.

If theNode parameter is the instance node you want to
extract, set this parameter to null.

theFilter

FormNodeP

An item in the form, such as a button or cell, that
defines the filtering for the instance. Filtering of
elements is controlled by the transmit filters in the item.
If all of an element’s bound options are filtered out, then
the element is also filtered out. Use null for no filtering.

included
Namespaces

String

If set to null, a definition for each inherited namespace
is added to the root node of the instance when it is
extracted.

To filter the namespaces, list the prefixes for those
namespaces you want to include in the instance,
separated by spaces.

For example, to include only the XFDL and Custom
namespaces, you would set this parameter to:

XFDL Custom

Use #default to indicate the default namespace for the
instance.

Use an empty string (") to include only those
namespaces that are used by the instance.

Namespaces that are used in the instance are always
included, regardless of this setting.

theFile

String

The path to the file on the local drive that will contain
the XML instance.

theStream

java.io.QutputStream

The output stream to use.

theFlags

int

Reserved. This must be 0.

theScheme

String

Reserved. Must be null.

theRoot
Reference

String

A reference to the root node you want to extract. This
reference is relative to the instance node.

Use null to default to the instance node.

theNSNode

FormNodeP

A node that inherits the namespaces used in the
reference. This node defines the namespaces for the
method. Use null if the node that this method is
operating on has inherited the necessary namespaces.

com.PureEdge.xfdl.FormNodeP extractinstance | 59

Returns

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

Example

The following example shows amethod that takes the root node of aform and extractsan XML instance
caled “data’.

private static void updateDatal nstance(formNodeP theForn)
{

theForm extract | nstance("data", null, null,
"c:\Instance Fil es\Personnel\tenpdata.dat", 0, null, null, null);

60 | getAttribute com.PureEdge.xfdl.FormNodeP

getAttribute

Description

This method returns the value of a specific attribute for a node. For example, the following XFDL
represents a MIME data node:

<m medat a encodi ng="base64" ></ ni nedat a>

In this sample, you could use getAttribute to obtain the value of the encoding attribute, which would be

“base64” .
Method
public String getAttribute(
Sring theNamespaceURI,
Sring theAttribute
) throws UWI Exception;
Parameters
Expression Type Description
theNamespace String The namespace URI for the attribute. For example:
URI
http://wwmv. PureEdge. com XFDL/ 6. 0
theAttribute String The local name of the attribute. For example, compute,
encoding, and so on.
Returns

The attribute’'s value or throws a generic exception (UWI Exception) if an error occurs. If the attribute is
empty or does not exist, the method returns null.

Namespaces

If you refer to an attribute with a namespace prefix, getAttribute first looks for a complete match,
including both prefix and attribute name. If it does not find such amatch, it will look for a matching
attribute name that has no prefix but whose containing element has the same namespace.

For exampl e, assume that the custom namespace and the test namespace both resolve to the same URI.
In the following case, looking for the id attribute would locate the second attribute, sinceit has an
explicit namespace declaration:

<a xn ns: custonm" ABC' xnl ns:test="ABC'>
<custom nyEl enent id="1" test:id="2">

com.PureEdge.xfdl.FormNodeP getAttribute | 61

</ a>

However, in the next case, the id attribute does not have an explicit namespace declaration. Instead, it
inherits the custom namespace. However, since the inherited namespace resolves to the same URI, the
id attribute is still located:

<custom nyEl enent id="1">

Example

The following example shows a shortcut method that gets the value of the encoding attribute for a
specific node. A nodeis passed to the method, which then uses getAttribute to get the value of
encoding attribute. This sample method assumes that the attribute is aways in the XFDL namespace.

private static String get Encodi ngType(For mMNodeP t heNode) throws Exception

{
String theEncodi ngType;

t heConpute = theNode. get Attri but e(
"http://ww. PureEdge. com XFDL/ 6. 0", "encodi ng")
return(theEncodi ngType) ;

62 | getAttributeList

getAttributeList

Description

com.PureEdge.xfdl.FormNodeP

This method returns alist of attributes and alist of corresponding namespaces for a given node. For
example, the following XFDL represents a value node:

<val ue conpute="Fi el d1. val ue"></val ue>

In this sample, getAttributeList would return alist of attributes that contained compute and alist of
namespaces that contained http://www.PureEdge.conm/xfdl/6.0.

Method
public void getAttributel ist(
SringListHolder theNamespaces,
SringListHolder theAttributes
) throws UWI Exception;
Parameters
Expression Type Description
theNamespaces StringListHolder A list of namespace URIs. For example:
http://wwmv. PureEdge. com XFDL/ 6. 0
Each URI corresponds to the attribute in the same
position in the attribute list.
theAttributes StringListHolder A list of attributes. For example, compute, encoding,
and so on. Each attribute corresponds to a URI in the
same position in the namespace list.
Returns
Nothing or throws a generic exception (UWIException) if an error occurs.
Example

The following method uses getAttributelist to retrieve the list of anode’s attributes. It then searches
through the list looking for a compute attribute. When if locates a compute attribute, it uses
removeAttribute to remove the compute from the node.

private static void stripConputes(FornmNodeP t heNode) throws Exception

{

int counter;
StringLi st Hol der URI Li st

new StringLi st Hol der[];

com.PureEdge.xfdl.FormNodeP getAttributeList | 63

StringLi st Hol der attributelList = new StringLi st Hol der[];
/* Retrieve the list of attributes for the supplied node. */
t heNode. get Attri butelList(URIList, attributelList);

/* Step through the list searching for the conpute attribute. If the
conpute attributes is found, delete it. */

for (counter = 0; counter < attributeList.value.length; counter++)

{
if (attributeList.val ue[counter].equal s("conpute"))
{
t heNode. renmoveAttri but e(URI Li st. val ue[counter],
attributelList.value[counter]);
}
}

64 | getCertificateList

getCertificateList

Description

com.PureEdge.xfdl.FormNodeP

This function locates all available certificates that can be used by a particular signature button. The
certificates are filtered according to the signature engine defined in the signFormat option of the button,
and according to the filters defined in the signdetail s option of the button.

Method

public Certificate [] getCertificatelist(

Sring theFilters,
IntHolder theSatus,

) throws UWI Exception;

Parameters

Expression Type

Description

theFilters String

A string that is used to filter the subject attribute of the certificate. If
the subject attribute include this substring, then that certificate will
be listed.

For example, you might filter against a name, such as “John Doe”,
or an email address, such as “jdoe@pureedge.com”.

Note that this filter is in addition to the other filters defined in the
signdetails option of the button.

If null is passed, then only the filters in the signdetails option are
used.

theStatus IntHolder

This is a status flag that reports whether the operation was
successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK — the operation was
successful.

SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.

SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED — the
operation required user input, but could not receive it (for example,
it was run on a server with no user).

Returns

An array containing the list of certificates objects.

com.PureEdge.xfdl.FormNodeP getCertificateList | 65

Example

The following example uses der eferenceEx to locate a specific signature button node.
getCertificatelL ist isthen used to get alist of valid certificates for that button. Finally, signForm signs
the button using the first certificate in the list.

private static void createSi gnature(FormNodeP t heFormthrows Exception
{

For mNodeP but t onNode;

I nt Hol der t heSt at us;

Si gnat ure theSi gnature;

Certificate [] certlList;

if ((buttonNode = t heForm dereferenceEx(null, "PAGELl. SI GBUTTONL",
0, FornmNodeP. UFL_I| TEM REFERENCE, null)) == null)

{
t hrow new UW Exception("Could not |ocate SIGBUTTONL node.");

}

theStatus = new I ntHol der();
certList = buttonNode.getCertificatelList(null, theStatus);

if (theStatus.value == securityUser StatusType. SUSTATUS_| NPUT_REQUI RED)
{

}

t heSi gnature = buttonNode. si gnForm{certList[0], null, theStatus);

t hrow new UW Exception("User input required to sign form");

if (theStatus.value == securityUser StatusType. SUSTATUS_| NPUT_REQUI RED)
{

}

t hrow new UW Exception("User input required to sign form");

66 | getChildren com.PureEdge.xfdl.FormNodeP

getChildren

Description

This method, along with getParent, is used to traverse vertically along the form hierarchy. getChildren
returns the first child node of the specified object node. If the node has no children null isreturned. All
children of a particular FormNodeP can be traversed using an iterator, such as awhileloop, in
combination with getNext.

Method

public FormNodeP getChildren() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The For mNodeP that represents the child or null if no such child exists. It will throw a generic
exception (UWIException) if an error occurs.

Example
In the following example the root node of aform is represented by a For mNodeP called theForm. The
method dereferenceEx isused to retrieve an item from the form called PAGEL.NAMELABEL.
getChildren returns the first child node of PAGE1.NAMELABEL that is PAGE1.NAMELABEL .value.
public class getFunctions
{
= theForm isareferenceto the root node of aform
= tempNodeis areference to the node returned from the method der eference

= childNodeisareference to the child node of tempNode

private static FornNodeP theForm
private static FornNodeP chi | dNode;

/* Additional Code Renoved */
public static void main(String argv[])
LornNodeP t enpNode;

/* Additional Code Renoved */

if ((tenpNode = theForm dereferenceEx(null, "PAGE1l. NAMELABEL",
0, For mMNodeP. UFL_I| TEM REFERENCE, null)) == null)

com.PureEdge.xfdl.FormNodeP getChildren | 67

{
}

t hrow new UW Exception("Coul d not | ocate Name | abel node.");

chil dNode = tenpNode. get Children();
chil dNode. setLiteral Ex(null, "The value option is the first ");

/* Additional Code Renobved */

68 |

getinfoEx

getinfoEx

Description

com.PureEdge.xfdl.FormNodeP

This method retrievesinformation about the specified object node. If you do not want information about
aparticular property, simply set it to null.

Method

public void getl nfoEx(

SringHolder theType,

SringHolder theliteral,

SringHolder theFormula,

SringHolder theldentifier,
Sring theChar Set)
throws UWI Exception;

Parameters

Expression

Type

Description

theType

StringHolder

A StringHolder that will store the type of the specified object
node.

If the type is empty or does not exist, the StringHolder is set
to null.

theLiteral

StringHolder

A StringHolder that will store the literal of the specified object
node.

If the literal is empty or does not exist, the StringHolder is set
to null.

theFormula

StringHolder

A StringHolder that will store the formula of the specified
object node.

If the formula is empty or does not exist, the StringHolder is
set to null.

theldentifier

StringHolder

A StringHolder that will store the identifier of the specified
object node.

If the identifier is empty or does not exist, the StringHolder is
set to null.

theCharSet

String

The character set you want to use to view the results. Use
null or Unicode for Unicode. Use Symbol for Symbol.

com.PureEdge.xfdl.FormNodeP getinfoEx | 69

Returns

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

Notes
If you are getting information about a node that is not in the XFDL namespace, GetlnfoEx may return
values that include namespace prefixes as follows:
= Anyitem nodein anon-XFDL namespace will return a Type that includes a namespace prefix. For
example, myNamespace: Field1.
= Any option nodein a non-XFDL namespace will return an Identifier that includes a namespace
prefix. For example, myNamespace: value.
Example

Inthe following example, dereferenceEx isused to locate a specific node. getl nfoEX isthen used to get
the four values from that node. The four values are then printed out.

private static void checkAgeFi el dNode(For mNodeP t heForn) throws Exception
{

For mNodeP t enpNode;

StringHol der theType = new StringHol der();

StringHol der theLiteral = new StringHolder();

StringHol der theFormula = new StringHol der();

StringHol der theldentifier = new StringHol der();

if ((tenpNode = theForm dereferenceEx(null, "PAGEl. AGEFIELD', 0,
For mNodeP. UFL_I TEM REFERENCE, null)) == null)

{
t hr ow new UW Excepti on("Coul d not | ocate AGEFI ELD node.");

}

t empNode. get | nf oEx(t heType, theLiteral, theFormula, theldentifier,
nul I');

/* Print out the information. */

Systemout.println("Type: " + theType.val ue);

Systemout.printin("Literal: " + thelLiteral.value);
Systemout.println("Formula: " + theFornul a.val ue);
Systemout.printin("ldentifier: " + theldentifier.value);

70 | getLiteralByRefEx com.PureEdge.xfdl.FormNodeP

getLiteralByRefEx

Description

This method finds a particular FormNodeP on the basis of areference string. The specified object is
used as the starting node of the search unless an absolute reference is provided. Once the FormNodeP
isfound, its literal isretrieved.

Method
public Sring getL iteralByRefEX(
Sring theScheme,
Sring theReference,
int theReferenceCode
Sring theChar Set,
FormNodeP theNSNode;
) throws UWI Exception;
Parameters
Expression Type Description
theScheme String Reserved. This must be null.
theReference String The reference string.
theReferenceCode int Reserved. Must be 0.
theCharSet String The character set you want to use to view the literal string.
Use null or Unicode for Unicode. Use Symbol for Symbol.
theNSNode FormNodeP A node that is used to resolve the namespaces in
theReference parameter (see the note about namespace
below). Use null if the node that this method is operating on
has inherited the necessary namespaces.
Returns
The literal string or throws a generic exception (UWI Exception) if an error occurs. If the literal is
empty or does not exist, the method returns null.
Notes

This method is a shortcut method and is equivalent to performing the following on a For mNodeP
object:

aNode. der ef erenceEx(t heSchene, theReference, theReferenceCode,

com.PureEdge.xfdl.FormNodeP getLiteralByRefEx | 71

UFL_OPTI ON_REFERENCE | UFL_SEARCH_AND_CREATE,
t heNanespaceNode) . get Li t er al Ex(aChar Set) ;

FormNodeP

Before you decide which FormNodeP to use as the specified object node, be sure you understand the
following:

1. The FormNodeP supplied can never be more than one level in the hierarchy above the starting
point of the reference string. For example, if the reference string begins with an option, then the
FormNodeP can be no higher in the hierarchy than an item.

2. Ifthe FormNodeP is at the same level or lower in the hierarchy than the starting point of the
reference string, the method will attempt to locate acommon ancestor. The method will locate the
ancestor of the FormNodeP that is one level in the hierarchy above the starting point of the
reference string. The method will then attempt to follow the reference string back down through the
hierarchy. If the reference string cannot be followed from the located ancestor (for example, if the
ancestor is not common to both the FormNodeP and the reference string), the method will fail.

For example, given a FormNodeP that represents “field_1" and areference of “field_2”, the
method will access the “page” node above “field_1", and will then try to locate “field_2" below
that node. If the two fields are not on the same page, the method will fail.

3. If the FormNodeP is at the argument level, the search will not start from that point. Instead, the
nearest ancestor that is at the option level will be used as the starting point for the search.

Creating a Reference String

For more information about creating a reference string, see “References’ on page 8.

Determining Namespace

In some cases, you may want to use the getL iter alByRefEx method to get theliteral of anode that does
not have a globally defined namespace. For example, consider the following form:

<l abel sid="Label 1">
<val ue>Fi el d1. processi ng: nyVal ue</ val ue>
</ | abel >
<field sid="Fieldl" xm ns: processi ng="URl">
<val ue></val ue>
<processi ng: myVal ue>10<pr ocessi ng: nyVal ue>
</field>

In this form, the processing namespace is declared in the Field1 node. Any elementswithin Field1 will
understand that namespace; however, elements outside of the scope of Field1 will not.

In cases like this, you will often start your search at a node that does not understand the namespace of
the node you are trying to locate. For example, you might want to locate the node referenced in the
value of Labell. Inthiscase, youwould first locate the Label 1 value node and get itsliteral. Then, from
the Label 1 value node, you would attempt to locate the processing: myValue node as shown:

Label 1Node. get Li teral ByRef Ex(nul |, "Fi el d1. processi ng: nyVal ue", 0,
nul I, null)

In this example, the getL iteralByRefEx method would fail. The method cannot properly resolve the
processing namespace because this namespace is not defined for the Label 1 value node. To correct this,

72 | getLiteralByRefEx com.PureEdge.xfdl.FormNodeP

you must also provide a node that understands the processing namespace (in this case, any node in the
scope of Fieldl) asthe last parameter in the method:

Label 1Node. get Li t er al ByRef Ex(nul | , "Fi el d1. processi ng: nyVal ue", 0,
nul I, Fi el d1Node)

Example

Thefollowing example uses getL iter al ByRefEX to get the literal value from aspecific node. That value
isthen converted into an integer.

private static int getCurrentDay() throws Exception

{
String tenp;
temp = theForm getLiteral ByRef Ex(nul |, "PAGELl. CURRENTDAY. val ue", 0,
null, null);

/* If aliteral value was returned, convert it into an integer val ue;
ot herwi se, indicate that no value was entered into the field and throw
an exception. */

if (temp.length() > 0)

{
return I nteger.parselnt(tenp);
}
el se
{
t hrow new UW Exception("The current day was not entered.");
}

com.PureEdge.xfdl.FormNodeP getLiteralEx | 73

getLiteralEx

Description

This method retrieves the literal of anode. The literal is returned in the specified character set.

Method
public Sring getL iteral Ex(
Sring theChar Set
) throws UWI Exception;
Parameters
Expression Type Description
theCharSet String The character set you want to use to view the literal string.
Use null or Unicode for Unicode. Use Symbol for Symbol.
Returns
A string containing the literal of the node or throws a generic exception (UW I Exception) if an error
occurs. If the literal is empty or does not exist, the method returns null.
Example

The following example uses der eferenceEx to locate a specific node. getL iteral Ex isthen used to get
the literal value for that node.

private static void getGender() throws UW Exception

{
For mNodeP t enpNode;
String tenp;
if ((tenpNode = theForm dereferenceEx(null, "PAGELl. MALERADI O val ue",
0, FormNodeP. UFL_OPTI ON_REFERENCE | For mNodeP. UFL_SEARCH, null)) ==
nul I')
{
t hrow new UW Exception("Coul d not | ocate MALERADI O val ue node.");
}

temp = tenpNode. getLiteral Ex(null);

/* additional code renoved */

74 | getLocalName com.PureEdge.xfdl.FormNodeP

getLocalName

Description

This method returns the local hame of a given node. The local name is determined by the XML tag that
represents that node. For example, examine the following XML fragment:
<page si d="PAGE1l">
<gl obal si d="gl obal "></gl obal >
<field sid="testField">
<val ue>Hel | o</ val ue>
<bgcol or >
<ae>120</ ae>
<ae>120</ ae>
<ae>120</ ae>
<bgcol or >
</field>
</ page>

In this sample, the name of the page node is “page”’, the name of the field nodeis “field”, the name of
the value node is “value’, and the name of the bgcolor nodeis “bgcolor”. The bgcolor node is aso the
parent of three array element nodes, all of which are named “ag”.

Note that the local name does not include any namespace prefix that might exist. For example, you
might have a custom option in a different namespace as shown:

<field sid="testField>
<cust om my_opti on>val ue</ cust om ny_opti on>
</field>

In this case, the local name of the custom option is returned without the prefix, resulting in
“my_option”.

Method

public Sring getL ocalName() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The name of the node or throws a generic exception (UW I Exception) if an error occurs.

Example

The following method takes the root node of the form and uses recursion to step through each node in
the form. The method usesisXFDL and getL ocalNameto locate al |abel nodesin the XFDL
namespace and changes the background color of those nodes to green.

com.PureEdge.xfdl.FormNodeP

getLocalName | 75

private static void changelLabel Col or (For mNodeP t heNode) throws Exception

{

For mNodeP t enpNode, bgcol or Node;

/* Use recursion to step through each node in the form */

tempNode = t heNode. get Chil dren();
whi | e(tenpNode != null)
{
changelLabel Col or (t enpNode) ;
tenpNode = tenpNode. get Next ()
}

/[* If the node is a label in the XFDL namespace, |ocate the
background col or child node and change its value to green.

if ((tenpNode.isXFDL()) && (tenpNode. getLocal Nane. equal s("Il abel")))

i f ((bgcol or Node = tenpNode. der ef erenceEx(null, "bgcol or",

UFL_OPTI ON_REFERENCE | UFL_SEARCH, null)) == null)

t hrow new UW Exception ("Coul d not |ocate bgcol or node.");

bgcol or Node. setLiteral Ex(null, "G een");

76 | getNamespaceURI com.PureEdge.xfdl.FormNodeP

getNamespaceURI

Description

This method returns the namespace URI for the node.

Each namespace is defined in the form by a namespace declaration, as shown:
xm ns: xfdl ="http://ww. Pur eEdge. coni XFDL/ 6. 0"
xm ns: cust om="htt p: // www. Pur eEdge. conmf Cust onf'

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://mmww.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<cust om cust om opti on>val ue</ cust om cust om opti on>
</field>

Method

public Sring getNamespaceURI () throws UWIException;

Parameters

There are no parameters for this method.

Returns

The namespace URI or throws a generic exception (UWIException) if an error occurs.

Example

The following method uses recursion to traverse the entire node structure and destroys al nodes that are
in the custom namespace identified by the following URI: http://www.PureEdge.com/Custom. This
method assumes that you are passing in the root node of the form.

private static void del et eCust onl nf o(For mNodeP t heNode) throws Exception

{
For mNodeP t enpNode, tenpNode2;

/* Use recursion to step through each node of the form */

tenpNode = t heNode. get Chil dren();
whi | e(tenpNode != null)
{
tenmpNode2 = tenpNode. get Next () ;
del et eCust onl nf o(t enpNode) ;
t enpNode = tenpNodez2;

com.PureEdge.xfdl.FormNodeP getNamespaceURI | 77

}

/* If the node belongs to the custom nanespace, delete it. */

i f (theNode. get NanespaceURI (). equal s
("http://ww. PureEdge. com Cust oni'))
t heNode. destroy();

78 | getNamespaceURIFromPrefix com.PureEdge.xfdl.FormNodeP

getNamespaceURIFromPrefix

Description

This method returns the namespace URI that corresponds to a specific prefix. You can call this method
from any node in the form, as long as that node either declares or inherits the namespace in question.

Each namespace is defined in the form by a namespace declaration, as shown:
xm ns: xfdl ="http://ww. Pur eEdge. coni XFDL/ 6. 0"
xm ns: cust om="htt p: / / www. Pur eEdge. conmf Cust ont'

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://mww.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<cust om cust om opti on>val ue</ cust om cust om opti on>
</field>

Method

public Sring getNamespaceURI FromPr efix(
Sring thePrefix
) throws UWI Exception;

Parameters

Expression Type Description

thePrefix String The namespace prefix. For example, xfdl.
Returns

The namespace URI or throws a generic exception (UWIException) if an error occurs. If the
namespace URI is not declared, the result is null.

Example

The following method copies a custom option from one form to another. The method assumes that you
know the prefix for the custom namespace, but not the URI. First, the method uses

getNamespaceURI FromPrefix to get the URI for the custom namespacein the first form. Next, it adds
that namespace to the second form as a globally available namespace. It then locates the custom nodein
the first form and the global item node in the second form. Finally, it copies the custom node to the
second form as a child of the global item node.

com.PureEdge.xfdl.FormNodeP getNamespaceURIFromPrefix | 79

private static void copyCustom nf o(For mMNodeP fornl, FornNodeP fornR)
t hrows Exception

{
String theURl;

For mNodeP t enpNode, dupl i cat eNode, gl obal Node;

/* Get the URI for the customnanespace in form1l. If the URl is null,
throw an error. */

if ((theURI = forndl. get NanespaceURI FronPrefi x("custon')) == null)
t hr ow new UW Excepti on(" Cust om nanespace not declared in form");

/* Create a custom nanmespace in form2 using that URI. */

fornR. addNanmespace(t heURl, "custont');

/* Locate the custom Status node in form1. */

if ((tenpNode = forml. dereferenceEx(null,
"gl obal . gl obal . custom St atus", 0, UFL_OPTI ON_REFERENCE |
UFL_SEARCH, null)) == null)
t hr ow new UW Exception("Could not find custom Status node.");

/* Locate the global itemin form2. */

if ((gl obal Node = forn®. dereferenceEx(null, "global.global", O,
UFL_I TEM REFERENCE | UFL_SEARCH, null)) == null)

t hrow new UW Exception("Could not [ocate global item");

/* Copy the customnode fromform1l and insert it as a child of
the global itemin form2. */

if ((duplicateNode = tenpNode. dupli cate(gl obal Node, UFL_APPEND _CHI LD,
nul 1)) == null)
t hr ow new UW Exception("Coul d not duplicate node.");

80 | getNext com.PureEdge.xfdl.FormNodeP

getNext

Description

This method, along with getPrevious, is used to traverse horizontally along the form hierarchy. getNext
returns the next sibling node after the specified object node. For instance, the page node corresponding
to the first page of your form can be reached by calling getNext on the global page node.

Method

public FormNodeP getNext() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The For mNodeP that represents the next sibling node or null if no such node exists. A generic
(UWIException) isthrown if an error occurs.

Example

In the following example the root node of aform is represented by a For mNodeP called theForm. The
method dereferenceEx is used to retrieve an item from the form called NAMELABEL. Then getNext
isused to retrieve a second item that is the next sibling node after NAMELABEL.

public class UFLGet Functi ons

{
private static FornNodeP theForm

private static FornNodeP tenpNode;
private static FornNodeP next Node;
/* Additional Code Renoved */

public static void main(String argv[])

{ /* Additional Code Renoved */
if ((tenpNode = theForm dereferenceEx(null, "PAGELl. NAMELABEL",
0, For mNodeP. UFL_I TEM REFERENCE, null)) == null)
{ t hrow new UW Exception("Could not |ocate Nane | abel node.");
Lext Node = tenpNode. get Next ();
/* Additional Code Renoved */
}

com.PureEdge.xfdl.FormNodeP getNodeType | 81

getNodeType

Description

This method returns the type for the current node (for example, page, item, option, and so on). This
allows you to quickly determine the type of node you are working with and what depth you are at in the
node hierarchy.

Method

publicint getNodeType() throws UWIException;

Parameters

There are no parameters for this method.

Returns

One of the following types:

= FormNodePUFL_FORM — Theroot node of the form.

= FormNodePUFL_PAGE — A page level node.

s FormNodePUFL_ITEM — Anitem level node.

= FormNodePUFL_OPTION — An option level node.

= FormNodePUFL_ARRAY — An argument level node, such as an array element.
This method throws a generic exception (UW I Exception) if an error occurs.

Example

The following method recieves a node bel ow the page level and uses getParent to ascend the hierarchy
until it reaches a page node, as detected by getNodeType.

private static FornNodeP ascendToPage(For mMNodeP t heNode) throws Exception

{
while ((theNode !'= null) && (theNode. get NodeType() !=

For mNodeP. UFL_PAGE))
{

}
return(theNode);

t heNode = theNode. get Parent ();

82 | getParent com.PureEdge.xfdl.FormNodeP

getParent

Description

This method, along with getChild, is used to traverse vertically along the form hierarchy. getPar ent
returns the parent node of the specified object node. If the node has no parent, null isreturned. A form’s
structure can be traversed up to the root node using an iterator such as awhile loop.

Method

public FormNodeP getParent() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The For mNodeP that represents the parent node or null if no such child exists. A generic
(UWIException) isthrown if an error occurs.

Example

In the following example the root node of aform is represented by a For mNodeP called theForm. The
method der eferenceEx is used to retrieve an option node from the form called PAGE1.AGEFIELD .size.

getParent returns the parent node of PAGE1L.AGEFIELD.size, that is, PAGEL.AGEFIELD.

public class UFLGet Functi ons

{

private static FornNodeP t heForm
private static FornNodeP tenpNode;
private static FornNodeP par ent Node;

/* Additional Code Renobved */

public static void main(String argv[])

{
/* Additional Code Renoved */

if ((tenpNode = theForm dereferenceEx(null,
"PAGEl. AGEFI ELD. si ze", 0, FornNodeP. UFL_OPTI ON_REFERENCE |
For mNodeP. UFL_SEARCH, null)) == null)

t hrow new UW Exception("Could not |ocate AgeField size
| abel node.");

}
par ent Node = tenpNode. getParent();

/* Additional Code Renoved */

com.PureEdge.xfdl.FormNodeP getParent | 83

84 | getPrefix com.PureEdge.xfdl.FormNodeP

getPrefix

Description

This method returns the namespace prefix for the node.

Each namespace is defined in the form in the by a namespace declaration, as shown:
xm ns: xfdl ="http://ww. Pur eEdge. coni XFDL/ 6. 0"
xm ns: cust ome" htt p: // www. Pur eEdge. com XFDL/ Cust ont

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://mmww.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<cust om cust om opti on>val ue</ cust om cust om opti on>
</field>

Method

public Sring getPrefix() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The prefix for the node’s namespace or throws a generic exception (UWI Exception) if an error occurs.

Example

The following method uses recursion to traverse the entire node structure and destroys al nodes that are
in the custom namespace identified by the prefix custom. This method assumes that you are passing in
the root node of the form.

private static void del et eCust onl nf o(For mNodeP t heNode) throws Exception

{
For mNodeP t enpNode, tenpNode2;

/* Use recursion to step through each node of the form */

tenpNode = t heNode. get Chil dren();
whi | e(tenpNode != null)
{
tenmpNode2 = tenpNode. get Next () ;
del et eCust onl nf o(t enpNode) ;
t enpNode = tenpNodez2;

com.PureEdge.xfdl.FormNodeP getPrefix | 85

}

/* If the node is in the custom namespace, delete it. */

i f (theNode.getPrefix().equal s("custon'))
t heNode. destroy();

86 | getPrefixFromNamespaceURI com.PureEdge.xfdl.FormNodeP

getPrefixFromNamespaceURI

Description

This method returns the namespace prefix for a specific namespace URI. You can call this method from
any node in the form, as long as that node either declares or inherits the namespace in question.

Each namespace is defined in the form in the by a namespace declaration, as shown:

xm ns: xfdl ="http://ww. Pur eEdge. coni XFDL/ 6. 0"
xm ns: cust ome" htt p: // www. Pur eEdge. com XFDL/ Cust ont

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://mww.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<cust om cust om opti on>val ue</ cust om cust om opti on>

</field>
Method
public String getPrefixFromNamespaceURI (
Sring theURI
) throws UWI Exception;
Parameters
Expression Type Description
theURI String The namespace URI. For example:
http://wwmv. PureEdge. com XFDL/ 6. 0
Returns

The namespace prefix or throws a generic exception (UWI Exception) if an error occurs. If the
namespace URI is not declared, the result is null.

Example

The following method adds custom information to a form and assumes that the namespace URI for the
custom information is known but that the prefix used to represent that namespace in the form is not
known. First, the method uses get Pr efixFromNamespaceURI to get the prefix in use. The method then
concatenates the prefix with the name for the new node, “ Status’. Finally, the method locates the global
item in the global page and creates a new option node.

com.PureEdge.xfdl.FormNodeP getPrefixFromNamespaceURI | 87

private static void addStat us(For mNodeP t heNode) throws Exception

{
XFDL t heXFDL;

String thePrefix;
String theNodeNane;

/* Retrieve the prefix for the custom nanmespace. If the prefix is
null, throw an error. */

if ((thePrefix = theNode. get Prefi xFromNanespaceURI (
"http://ww. PureEdge. com XFDL/ Custont')) == null)
t hrow new UW Excepti on(" Cust om nanmespace not declared in form");

/* Create a nanme for a new node by concatenating the prefix with
"Status". */

t heNodeNanme = thePrefix + ":Status";

/* Locate the global itemin the gl obal page so we can add a gl obal
option. */

if (theNode = theNode. dereferenceEx(null, "global.global", O,
UFL_| TEM REFERENCE | UFL_SEARCH, null) == null)
t hrow new UW Exception("Coul d not | ocate global.global node.");

/* Get the XFDL object so we can create a new node. */

if ((theXFDL = | FSSingl eton.get XFDL()) == null)
t hrow new UW Exception("Could not find XFDL interface.");

/* Create a new node in the custom nanespace and give it a val ue
of "Processed". */

if (theNode = theXFDL. create(theNode, UFL_APPEND CHI LD, null,
"Processed", null, theNodeNane) == null)
t hrow new UW Exception("Could not create Status node.");

88 | getPrevious com.PureEdge.xfdl.FormNodeP

getPrevious

Description

This method, along with getNext, is used to traverse horizontally along the form hierarchy. getPrevious
returns the previous sibling node of the specified object node in the tree. For instance, the global page
node can be reached by calling getPrevious on the node corresponding to the first page of your form.

Method

public FormNodeP getPrevious() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The FormNodeP that represents the previous sibling node or null if no such node exists. A generic
exception (UWIException) isthrown if an error occurs.

Example

In the following example the root node of aform is represented by a For mNodeP called theForm. The
method der eferenceEx is used to retrieve an item from the form called NAMELABEL. Then
getPreviousis used to retrieve a second item that is the sibling node before NAMELABEL.

public class UFLGet Functi ons

{
private static FornNodeP theForm

private static FornNodeP tenpNode;
private static FornNodeP prevNode;
/* Additional Code Renoved */

public static void main(String argv[])

{ /* Additional Code Renoved */
if ((tenpNode = theForm dereferenceEx(null, "PAGELl. NAMELABEL",
0, For mNodeP. UFL_I TEM REFERENCE, null)) == null)
{ t hrow new UW Exception("Could not |ocate Nane | abel node.");
|};)revNode = tenpNode. get Previ ous();
/* Additional Code Renoved */
}

com.PureEdge.xfdl.FormNodeP getReferenceEx | 89

getReferenceEx

Description

This method returns the reference string that identifies the node. For example, avalue node might return
areference of Pagel.Fieldl.value. The reference will either begin at the page level of the form or at a
level specified by the caller.

Method
public Sring getReferenceEx(
Sring theScheme,
FormNodeP theNSNode,
FormNodeP theSartPoint,
boolean addNamespaces
) throws UWI Exception;
Parameters
Expression Type Description
theScheme String Reserved. This must be null.
theNSNode FormNodeP A node that defines which namespace prefixes are
used when constructing the reference. Only
namespace prefixes that this node inherits are used.
Use null if the node that this method is operating on
has inherited the necessary namespaces.
theStartPoint FormNodeP A node that determines the starting point of the
reference. This node must be a parent of the node this
method is operating on. The reference will begin one
level below the start point node. For example, if you
provide a page node the reference will begin at the item
level. Use null to start the reference at the page level.
addNamespaces boolean Use true to add declarations for unknown namespaces
to the namespace node (theNSNode). Otherwise, use
false.
Returns

A string containing a reference to the node, or throws a generic exception (UWIEXxception) if an error
occurs.

90 |

getReferenceEx

Notes

com.PureEdge.xfdl.FormNodeP

Creating a Reference String

For more information about creating a reference, see “References’ on page 8.

Working with Namespace Prefixes

In some cases, you may want to use the getReferenceEx method to get the reference to a node that uses
adifferent prefix for a known namespace. For example, consider the following form:

<l abel sid="Label 1" xm ns: data="URl">
<val ue></val ue>
</ | abel >
<field sid="Fieldl" xm ns: processi ng="URl">
<val ue></val ue>
<processi ng: myVal ue>10<pr ocessi ng: nyVal ue>
</field>

In thisform, processing and data are prefixes for the same namespace, since they both refer to the same
URI. However, both namespaces have limited scope since they are declared at the item level. This
means that Label 1 node does not understand the processing prefix, and that the Field1 node does not
understand the data prefix.

This becomes a problem if you want to refer to a namespace from alocation that does not understand
that namespace. For example, suppose you wanted to set the value of Label 1 to be areference to the
myValue node in Field1. Normally, you would locate the myValue node and use getReferenceEx as
shown:

nyVal ueNode. get Ref erenceEx(null, null, null, false)

In this case, getReferenceEx would return the following reference: Pagel.Field1.processing: myValue.
However, because the processing namespace is not defined for Label1, a reference to the processing
namespace is not understood. This meansthat you cannot set the value of Label1 to equal thisreference,
since the node would not understand that content.

Instead, you must generate a reference that includes a known namespace prefix, such as the data
namespace. You can do this by including a second node in the getReferenceEx method. The second
node must understand the appropriate namespace. For example, you could include the Label1 node as
the last parameter in the method, as shown:

nyVal ueNode. get Ref erenceEx(nul |, Label 1Node, null, fal se)

In this case, the method will substitute the data prefix for the processing prefix, since they both resolve
to the same namespace. As aresult, the method will return: Pagel.Fieldl.data:myValue. Sincethe data
prefix is defined within Label1, you can use this reference to set Label 1's value node.

Working with Unknown Namespaces

In some cases, you may want to use the UFL GetReferenceEx function to get the reference to a node
that uses an unknown namespace. For example, consider the following form:

<page si d="Pagel" xm ns: processing="URl 1">
<gl obal si d="gl obal ">
<processi ng: i nfo></ processi ng: i nf o>
</ gl obal >

com.PureEdge.xfdl.FormNodeP getReferenceEx | 91

<field sid="Fieldl" xm ns:data="URI 2">
<val ue></ val ue>
<dat a: i nf o>dat a</ dat a: i nf 0>
</field>

Inthis example, you might want to store areference to the <datacinfo> element in the <processing:info>
element. getReferenceEx would return the following reference for the <data:info> element:
Pagel.Fieldl.data:info. However, this reference includes the data namespace, which is not defined for
the page global. This means that you could not store this reference in the <processing:info> element,
because it would not understand the reference.

To solve this problem, you can use the addNamespaces flag in the getReferenceEx method. When this
flagis set to true, the function will add unknown namespaces to the theNSNode.

For example, if you set theNSNode to be the global item node for Pagel, and set the addNamespace flag
to true, as shown:

dat aNode. get Ref erenceEx(nul |, paged obal Node, null, true)

The method would return the reference to the <data:info> element, but would also modify the global
item node to include the unknown data namespaces, as shown:

<gl obal sid="gl obal" xm ns: data="URI 2">

You could then store the reference in that global item or any of its descendants, since the namespaceis
now properly defined.
Example

The following example, a page node is passed to the method. The method then uses getChildren and
getNext to locate the last item node in the page. getReferenceEx is then called to get the reference to
that node, which isreturned to the caller.

public String getLastltenReference(FormModeP pageNode)

{
For mNodeP it emNode, tenpNode;

String theReference;
/* Get the first itemnode in the page. */
i tenNode = pageNode. get Children();
/* Cycle through to the last itemnode in the page. */

while ((tenpNode = itemNode. getNext()) !'= null)
{

}

/* Get the reference to the node and return it. */

i tenNode = t enpNode;

theRef erence = itemNode. get Ref erenceEx(null, null, null, false);

return(theReference);

92 | getSecurityEngineName com.PureEdge.xfdl.FormNodeP

getSecurityEngineName

Description

This method returns the name of the appropriate security engine for a given button or signature node.
Thisis useful for determining which validation call you need to make to validate the signature.

Method
public Sring getSecurityEngineName(
int theOperation
) throws UWI Exception;
Parameters
Expression Type Description
theOperation int The operation you want the security engine for.
Possible values are:
SecurityManager.SEOPERATION_SIGN — the
engine is needed to sign the form.
SecurityManager.SEOPERATION_VERIFY — the
engine is needed to verify the signature.
SecurityManager.SEOPERATION_LISTIDENTITIES
— the engine is needed to generate a list of valid
certificates for signing.
Returns
A string containing the name of the security engine on success, or throws a generic exception
(UWIException) if an error occurs.
Example

The following example uses getSecurityEngineName to get the appropriate engine for a signature
verification. If the engine is HMAC-ClickWtrap, the example calls afunction that will verify an HMAC
signature. Otherwise, the example calls afunction that verifies other types of signatures.

public short validateSi gnature(For mMNodeP si gNode)
{

String engi neNane;

short validation;

engi neNanme = si gNode. get Securi t yEngi neName
(Securit yManager . SEOPERATI ON_VERI FY) ;

com.PureEdge.xfdl.FormNodeP getSecurityEngineName | 93

i f (engineName. equal s("HVAC-C i ckWap"))

{
val idation = validat eAut henti catedd i ckw apSi gnat ur e(si gNode) ;
}
el se
{
val idation = val i dat eNor mal Si gnat ur e(si gNode) ;
}

return(validation);

94 | getSigLockCount com.PureEdge.xfdl.FormNodeP

getSigLockCount

Description

This method returns the signature lock count of the specified object node. If 0 isreturned, the node is
not signed by any digital signature, but it may have descendants that are signed.

Method

publicint getSigL ockCount() throws UWIException;

Parameters

There are no parameters for this method.

Returns

The number of locks on the specified object node or throws a generic exception (UWIException) if an
€rror occurs.

Example

In the following example, der eferenceEx is used to locate the address field node. getSigL ockCount is
then used to determine how many signatures have locked the address field.

private static void del et eSi gnature(FormNodeP theForm throws Exception

{
For mNodeP addr essNode;

For mNodeP t enpNode;

if ((addressNode = theForm dereferenceEx(null, "PAGELl. ADDRESSFI ELD",
0, FormNodeP. UFL_I TEM REFERENCE, null)) == null)

{
}

i f (addressNode. get Si gLockCount() != 2)
{

}

t hrow new UW Exception("Coul d not | ocate ADDRESSFI ELD node.");

System out . printl n(" ADDRESSFI ELD not signed twice.");

com.PureEdge.xfdl.FormNodeP getSignature | 95

getSignature

Description

This method acts on a button or signature node and returns the signature object for that node.

Method

public Signature getSignature() throws UWI Exception;

Parameters

There are no parameters for this method.

Returns

A signature object if the call is successful, or throws a generic exception (UWIException) if an error
occurs.

Example

The following example uses getSignatur e to get the signature object from the signature node, and uses
getDataByPath to get the signer’sidentity from the signature object. It then calls
validateHM ACWithSecr et to validate the signature. Finally, it releases the signature object.

public short checkSi gnat ure(For mNodeP t heSi gnat ureNode, Certificate
theServerCert)

{

Si gnat ur e t heSi gnat urebj ect;

String theSecret;

String signer CormonNane;

Bool eanHol der encodedDat a;

| nt Hol der t heSt at us;

short validation;

t heSi gnat ur eObj ect = theSi gnat ur eNode. get Si gnature();

encodedDat a = new Bool eanHol der () ;

i f ((signerComopnNanme = theSi gnatureCbj ect. get Dat aByPat h(
"Subject: CN', false, encodedData)) == null)

{
}

t hrow new UW Exception("Coul d not deternine signer’s nane.");

/* I nclude external code that nmatches the signer’s identity to a shared
secret, and sets theSecret to match. This is nost likely a
dat abase | ookup. */

9 |

getSignature

com.PureEdge.xfdl.FormNodeP

theStatus = new I ntHol der();

val i dation = theSi gnatureNode. val i dat eHVACW t hSecr et (t heSecret,
theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUser StatusType. SUSTATUS_OK)
{

}

t hrow new UW Exception("Validation required user input.");

return(validation);

com.PureEdge.xfdl.FormNodeP getSignatureVerificationStatus | 97

getSignatureVerificationStatus

Description

This method checks aflag to seeif the digital signaturesin a given form were valid when last checked.

Thisflag is set initially by the readForm function. The flag is updated by other verification functions,
such asverifyAllSignatures, but is not affected by other changes that may have been made to the form.
For example, functions such as setL iteralEx may be used to change the value of signed itemsin the
form without affecting the value of this flag.

To verify asignature after changes have been made to the form, it is best to use verifySignature or
verifyAllSignatures.

Method

public short getSignatureVerificationSatus() throws UWIException;

Parameters

There are no parameters for this method.

Returns

A short having one of the following values:

Code Status
FormNodeP.UFL_SIGS OK The signatures are valid.
FormNodeP.UFL_SIGS _NOTOK One or more signatures are broken.

FormNodeP.UFL_SIGS_UNVERIFIED One or more signatures are unverifiable.

On error, the method throws a generic exception (UW I Exception).

Example

The following example read a form into memory, and then uses getSignatureVerificationSatusto
check if the signatures in aloaded form are valid.

private static void |loadFornm() throws Exception

{

For mNodeP. r eadFor n(" Sanpl e. xfd", 0);

if (theForm get SignatureVerificationStatus()!= FornmodeP. UFL_SI GS_OK)
{

}

Systemout.println("At |least one digital signature is not valid.");

98 | isXFDL com.PureEdge.xfdl.FormNodeP

ISXFDL

Description

This method determines whether the current node bel ongs to the X FDL namespace.
Each namespace is defined in the form in the by a namespace declaration, as shown:
xm ns: xfdl ="http://ww. Pur eEdge. coni XFDL/ 6. 0"
xm ns: cust ome" htt p: // www. Pur eEdge. com XFDL/ Cust ont

Each namespace declaration defines both a prefix and a URI for the namespace. In this sample, the
prefix for the XFDL namespace is xfdl and the URI is http://mmww.PureEdge.com/XFDL/6.0.

Tags within the form are assigned specific namespaces by using the defined prefix. For example, to
declare that an option was in the custom namespace you would use the prefix custom as shown:

<field sid="testField">
<cust om cust om opti on>val ue</ cust om cust om opti on>
</field>

Method

public boolean isXFDL () throws UWI Exception;

Parameters

There are no parameters for this method.

Returns

Trueif the node belongs to the XFDL namespace, false if it does not, or throws a generic exception
(UWIException) if an error occurs.

Example

The following method uses recursion to traverse the entire node structure and destroys al nodes that are
not in the XFDL namespace. This method assumes that you are passing in the root node of the form.

private static void del et eCust onl nf o(For mNodeP t heNode) throws Exception

{
For mNodeP t enpNode, tenpNode2;

/* Use recursion to step through each node of the form */

tenpNode = t heNode. get Chil dren();
whi | e(tenpNode != null)
{
tenmpNode2 = tenpNode. get Next () ;
del et eCust onl nf o(t enpNode) ;
t enpNode = tenpNodez2;

com.PureEdge.xfdl.FormNodeP isXFDL | 99

}

/* If the node is not in the XFDL nanespace, delete it. */

if (theNode.isXFDL() == fal se)
t heNode. destroy();

100 | removeAttribute com.PureEdge.xfdl.FormNodeP

removeAttribute

Description

This method removes a specific attribute from a node. For example, the following XFDL represents a
value node:

<val ue custom nyAtt="x"></val ue>

To remove the custom attribute from this node, you would use removeAttribute.

Method
public void removeAttribute(
Sring theNamespaceURI,
Sring theAttribute
) throws UWI Exception;
Parameters
Expression Type Description
theNamespace String The namespace URI for the attribute. For example:
URI
http://wwmv. PureEdge. com XFDL/ 6. 0
theAttribute String The local name of the attribute. For example, compute,
encoding, and so on.
Returns
Nothing or throws a generic exception (UWIException) if an error occurs.
Example

The following method uses getAttributel ist to retrieve thelist of anode’s attributes. It then searches
through the list looking for a compute attribute. When if locates a compute attribute, it uses
removeAttribute to remove the compute from the node.

private static void stripCustomAttri butes(FornmNodeP theNode) throws
Excepti on
{

int counter;
StringLi st Hol der URIList = new StringlListHolder[];
StringLi stHol der attributeList = new StringListHol der[];

/* Get the list of attributes for the node. */

com.PureEdge.xfdl.FormNodeP removeAttribute | 101

t heNode. get Attri butelLi st (URIList, attributelList);
/* Step through each attribute and delete the conpute. */

for (counter = 0; counter < attributeList.value.length; counter++)

{
if (attributeList.value[counter].equal s("customnyAtt"))
{
t heNode. renpoveAttri bute(URI Li st. val ue[counter],
attributeList.value[counter]);
}
}

102 | removeEnclosure com.PureEdge.xfdl.FormNodeP

removeEnclosure

Description

This method will either remove an enclosure from a specific datagroup or delete the enclosure from the
form. The specified object node is the FormNodeP that contains the enclosure to be removed.

Method
public void removeEnclosur g
Sring theDataGroup
) throws UWI Exception;
Parameters
Expression Type Description
theDataGroup String This is the datagroup that contains the enclosed item. If null,
the item will be removed from all datagroups. If an item no
longer belongs to any datagroups, it is deleted from the form.
Returns
Nothing if call is successful or throws a generic exception (UW I Exception) if an error occurs.
Example

The following example uses der eferenceEx to locate a specific data node. removeEnclosureisthen
used to remove the node from the form.

private static void del et eLogo(For mMNodeP t heForn) throws Exception

{
For mNodeP t enpNode;

if ((tenpNode = theForm dereferenceEx(null, "PAGEl. LOGODATA", O,
For mMNodeP. UFL_I TEM REFERENCE, null)) == null)

{
t hrow new UW Excepti on("Coul d not | ocate LOGODATA node.");

}

t enpNode. r emoveEncl osure(nul 1);

com.PureEdge.xfdl.FormNodeP setActiveForComputationalSystem | 103

setActiveForComputationalSystem

Description
This method sets whether the computational system is active. When active, all computesin the form are
evaluated on an on-going basis. When inactive, no computes are eval uated.

Note that turning the computational system on causesall computesin the form to be re-eval uated, which
can be time consuming.

Method
public void setActiveFor Computational System(
boolean active,
) throws UWI Exception;
Parameters
Expression Type Description
active boolean Set to true for active or false for inactive.
Returns

Nothing or throws a generic exception (UW I Exception) if an error occurs.

Example

The following example reads a form into memory with the computational system turned off. The
example then calls a processing method that adds a large amount of information to the form. Next,
setActiveFor Computational System is called to turn the computational system on and evaluate all of
the computes. Finally, the updated form is written to disk.

private static void processForm() throws Exception

{
XFDL t heXFDL;

For mNodeP t heFor m
/* Get the XFDL object */

if ((theXFDL = | FSSi ngl eton. get XFDL()) == null)
t hrow new Exception("Could not find interface");

/* Read the forminto nenory with the conputes turned off */
if ((theForm = theXFDL. readFor m("i nput. xfd",

XFDL. UFL_AUTOCOMPUTE_CFF)) == null)
t hrow new Exception("Could not load form");

104 | setActiveForComputationalSystem com.PureEdge.xfdl.FormNodeP

/* Call a method that adds information to the formfrom a dat abase */
addl nformati on(t heFornj;

/* Activate the conmputational system This will re-evaluate all
conputes with the new information in the form */

t heFor m set Act i veFor Conput at i onal Systen{true);
/* Wite the updated formto disk */

theForm writeForn{"output.xfd", null, 0);

com.PureEdge.xfdl.FormNodeP setAttribute | 105

setAttribute

Description

This method sets the value of a specific attribute for a node. For example, the following XFDL
represents a value node:

<val ue custom nyAtt="x"></val ue>

To change the custom attribute, you would use setAttribute. If the attribute does not already exist,
setAttribute will create it and assign the appropriate value.

Note: Do not use setAttribute to set the compute attribute. Instead, use setFormula.

Method

public void setAttribute(
Sring theNamespaceURI,
Sring theAttribute,
Sring theValue
) throws UWI Exception;

Parameters
Expression Type Description
theNamespace String The namespace URI for the attribute. For example:
URI
http://wwmv. PureEdge. com XFDL/ 6. 0
theAttribute String The local name of the attribute. For example, compute,
encoding, and so on.
theValue String The value to assign to the attribute.
Returns

Nothing or throws a generic exception (UWIException) if an error occurs.

Notes

Namespaces

If you refer to an attribute with a namespace prefix, setAttribute first looks for a complete match,
including both prefix and attribute name. If it does not find such amatch, it will look for a matching
attribute name that has no prefix but whose containing element has the same namespace.

106 |

setAttribute com.PureEdge.xfdl.FormNodeP

For exampl e, assume that the custom namespace and the test namespace both resolve to the same URI.
In the following case, looking for the id attribute would locate the second attribute (test:id), since it has
an explicit namespace declaration:

<a xm ns: cust om=" ABC' xm ns:test="ABC"'>

<custom nyEl enent id="1" test:id="2">

</ a>
However, in the next case, the id attribute does not have an explicit namespace declaration. Instead, it
inherits the custom namespace. However, since the inherited namespace resolves to the same URI, the
id attribute is still located:

<custom nyEl enent id="1">

Example

The following example shows a shortcut method that sets a custom data attribute for a specific node. A
node and a string containing the contents of the attribute are passed to the method, which then uses
setAttribute to set the attribute for the node.

private static void setCustomAttri bute(FormNodeP theNode, String
theContents) throws Exception

{
t heNode. set Attri bute("http://ww. PureEdge. com XFDL/ Custont, "Data",

t heCont ent s)

com.PureEdge.xfdl.FormNodeP setFormula | 107

setFormula

Description

This method sets the formula of the specified object node.

Method

public void setFormula(
Sring theFormula
) throws UWI Exception;

Parameters
Expression Type Description
theFormula String The formula to assign to the specified object node. If null, the
formula is assigned as null.
Returns

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

Example
In this example, dereferenceEx is used to locate a specific node. setFor mula isthen used to set the
appropriate formulafor the age field.

private static void setFormul a(int curhMnth, int curDay, int birNbnth,
int birDay) throws Exception

{
For mNodeP t enpNode;
t heFor m der ef erenceEx(nul |, "PAGELl. AGEFI ELD. val ue", 0,
For mNodeP. UFL_OPTI ON_REFERENCE | For nNodeP. UFL_SEARCH AND_ CREATE,
nul I')

/* The following logic sinply identifies how the conputation should be
set. If the current date is later in the year than the birth date,
then the age is: current year - birth year. |If the current date is
earlier in the year than the birth date, then the age is: current year
- birth year - 1. */

if ((curMonth > birMnth) ||
(curMonth == birMnth) && (curDay > birDay)))
{

t emrpNode. set For nul a(" PAGELl. CURRENTYEAR. val ue —

108 | setFormula com.PureEdge.xfdl.FormNodeP

PAGEL. Bl RTHYEAR. val ue");

}
el se
{
t enpNode. set For nul a(" PAGEL. CURRENTYEAR val ue —
PAGEL. BI RTHYEAR val ue - \"1\"");
}

/* additional code renoved */

com.PureEdge.xfdl.FormNodeP setLiteralEx | 109

setLiteralEx

Description

This method sets the literal of anode. You should only set the literal for option or argument nodes.

Method

public void setLiteral Ex(
Sring theChar Set,
Sring theliteral
) throws UWI Exception;

Parameters
Expression Type Description
theCharSet String The character set in which theLiteral parameter is written. Use
null or Unicode for Unicode. Use Symbol for Symbol.
theLiteral String The literal to assign to the specified object node. If null, any
existing literal is removed.
Returns

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

Notes
Digital Signatures
You must not set the literal of a node that has already been signed because this will break the digital
signature and produce an error.

Example

In the following example, dereferenceEx is used to locate a specific node. setLiteral Ex isthen used to
change the literal of that node.

private static void changeNaneLabel (For mMNodeP theForm String newNane)
t hrows Exception

{
For mNodeP t enpNode;

if ((tenpNode = theForm dereferenceEx(null, "PAGELl. NAMELABEL. val ue",
0, For mNodeP. UFL_OPTI ON_REFERENCE | For mNodeP. UFL_SEARCH, nul |')) ==
nul I')

110 | setLiteralEx com.PureEdge.xfdl.FormNodeP

t hrow new UW Excepti on("Coul d not | ocate val ue node for
NAMELABEL. ") ;

}

t empNode. set Li teral Ex(nul |, newNane);

com.PureEdge.xfdl.FormNodeP setLiteralByRefEx | 111

setLiteralByRefEXx

Description

This method finds a particular FormNodeP as specified by areference string. The specified object node
isused as the starting point of the search. Once the FormNodeP is found, its literal will be set as
specified. If the FormNodeP does not exist, this method will createit, but only if the FormNodeP
would be an option or argument node.

If necessary, this method can create several nodes at once. For example, if you set theliteral for the
second argument of an itemlocation, this method will create the itemlocation option node and the two
argument nodes and then set the literal for the second argument node.

This method cannot create a FormNodeP at the form, page, or item level; to do so, use create.

Method

public void setLiteralByRefEx(
Sring theScheme,
Sring theReference,
int theReferenceCode,
Sring theChar set,
FormNodeP theNSNode,
Sring theliteral
) throws UWI Exception;

Parameters

Expression Type Description

theScheme String Reserved. This must be null.

theReference String A string that contains the reference.

theReferenceCode int Reserved. This must be 0.

theCharSet String The character set in which theLiteral parameter is written. Use
null for Unicode or Symbol for Symbol.

theNSNode FormNodeP A node that is used to resolve the namespaces in
theReference parameter (see the note about namespace
below). Use null if the node that this method is operating on
has inherited the necessary namespaces.

theLiteral String The string that will be assigned to the literal. If null, any
existing literal is removed.

112 | setLiteralByRefEx com.PureEdge.xfdl.FormNodeP

Returns

Notes

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

This method is a shortcut method and is equivalent to performing the following on a For mNodeP
object:

aNode. der ef erenceEx(t heSchene, theReference, theReferenceCode,
UFL_OPTI ON_REFERENCE | UFL_SEARCH AND_CREATE,
t heNanespaceNode) . set Li t eral Ex(aChar Set, aLiteral);

FormNodeP

Before you decide which FormNodeP to use as the specified object node, be sure you understand the
following:

1. TheFormNodeP you supply can never be more than one level in the hierarchy above the level at
which your reference string starts. For example, if the reference string begins with an option, then
the FormNodeP can be no higher in the hierarchy than an item.

2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the
reference string, the method will attempt to locate acommon ancestor. The method will locate the
ancestor of the FormNodeP that is one level in the hierarchy above the starting point of the
reference string. The method will then attempt to follow the reference string back down through the
hierarchy. If the reference string cannot be followed from the located ancestor (for example, if the
ancestor is not common to both the FormNodeP and the reference string), the method will fail.

For example, given a FormNodeP that represents “field_1" and areference of “field_2”, the
method will access the “page” node above “field_1", and will then try to locate “field_2" below
that node. If the two fields were not on the same page, the method would fail.

Creating a Reference String

For more information about creating a reference, see “References’ on page 8.

Digital Signatures
Do not set anode that is digitally signed. Doing so will break the digital signature and produce an error.

Determining Namespace

In some cases, you may want to use the setL iter alByRefEx method to set the value for a node that does
not have a globally defined namespace. For example, consider the following form:

<l abel sid="Label 1">
<val ue>Fi el d1. pr ocessi ng: nyVal ue</ val ue>
</l abel >
<field sid="Fieldl" xm ns: processi ng="URI">
<val ue></val ue>
<processi ng: myVal ue>10<pr ocessi ng: nyVal ue>
</field>

com.PureEdge.xfdl.FormNodeP setLiteralByRefEx | 113

In this form, the processing namespace is declared in the Field1 node. Any elementswithin Field1 will
understand that namespace; however, elements outside of the scope of Field1 will not.

In cases like this, you will often start your search at a node that does not understand the namespace of
the node you are trying to locate. For example, you might want to locate the node referenced in the
value of Labell. Inthiscase, youwould first locate the Label 1 value node and get itsliteral. Then, from
the Label 1 value node, you would attempt to locate the processing: myValue node as shown:

Label 1Node. set Li teral ByRef Ex(nul |, "Fi el d1. processi ng: nyVal ue", 0,
null, null, "20")

In this example, the setLiter alByRefEx method would fail. The method cannot properly resolve the
processing namespace because this namespace is not defined for the Label 1 value node. To correct this,
you must also provide a node that understands the processing namespace (in this case, any node in the
scope of Fieldl) as the last parameter in the method:

Label 1Node. set Li t eral ByRef Ex(nul | , "Fi el d1. processi ng: nyVal ue", 0,
nul I, FieldlNode, "20")

Example

In the original form, the label for the Age field instructs the user to leave the field blank. However, now
that the field has been filled in by aformula, thislabel needs to be changed. In the following example
setLiteralByRefEXx is used to change this value.

private static void setFormul a(int curhMnth, int curDay, int birNbnth,
int birDay) throws Exception

{
/* additional code renoved */
theForm set Li t eral ByRef Ex(nul |, "PAGEl. AGELABEL. val ue", 0, null,
nul I, "Age:");

114 | signForm com.PureEdge.xfdl.FormNodeP

signForm

Description

This method acts on a button node and creates a digital signature for that button. The signatureis
created using the signature filter in the button and the private key of the signer.

Method

public Signature signForm(
Certificate theSgner,
SringDictionary thelnfo,
IntHolder theSatus,
) throws UWI Exception;

Parameters
Expression Type Description
theSigner Certificate The certificate to use to create the signature.
thelnfo StringDictionary Always use a null value.
theStatus IntHolder This is a status flag that reports whether the operation was
successful. Possible values are:
SecurityUserStatus Type.SUSTATUS_OK — the operation
was successful.
SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.
SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED
— the operation required user input, but could not receive it
(for example, it was run on a server with no user).
Returns
A signature object if the call is successful, or throws a generic exception (UWIException) if an error
occurs.
Example

The following example uses der eferenceEx to locate a specific signature button node.
getCertificatelL ist isthen used to get alist of valid certificates for that button. Finally, signForm signs
the button using the first certificate in the list.

private void createSi gnature(FormNodeP t heFormthrows Exception

com.PureEdge.xfdl.FormNodeP signForm | 115

{
For mNodeP but t onNode;

| nt Hol der thesSt at us;
Si gnat ure theSi gnature;
Certificate [] certlList;

if ((buttonNode = t heForm dereferenceEx(null, "PAGEL. SI GBUTTONL",
0, FornmNodeP. UFL_I| TEM REFERENCE, null)) == null)

{
t hrow new UW Exception("Could not |ocate SIGBUTTONL node.");

}

theStatus = new I ntHol der();
certlList = buttonNode.getCertificateList(null, theStatus);

if (theStatus.value == SecurityUser StatusType. SUSTATUS | NPUT_REQUI RED)
{

}

t heSi gnature = buttonNode. si gnFornm{certList[0], null, theStatus);

t hrow new UW Exception("User input required to sign form™");

if (theStatus.value == SecurityUser StatusType. SUSTATUS_| NPUT_REQUI RED)
{

}

t hrow new UW Exception("User input required to sign form™");

116 | validateHMACWithSecret com.PureEdge.xfdl.FormNodeP

validateHMACW.ithSecret

Description

This method acts on a signature node to determine whether an HMAC signature is valid. You must
know the signer’s shared secret to use this method. The shared secret should be available from a
corporate database or other system.

This function will also notarize (that is, digitally sign) avalid HMAC signature if you provide a
certificate. Once notarized, you must use the verifySignature method to validate the signature.

Method

public short validateHM ACWithSecret(
Sring theSecret,
Certificate theServerCert,
IntHolder theSatus,
) throws UWI Exception;

Parameters

Expression Type Description

theSecret String The shared secret that identifies the user. This should be available
from a corporate database or other system.

If there is more than one shared secret, you must concatenate the
strings with no separating characters. For example, if the secrets
were “blue” and “red”, you would pass “bluered” to the function.

theServerCert Certificate The server certificate. If the HMAC signature is valid, the function
will use the private key of this certificate to digitally sign the HMAC
signature. This signature is appended to the signature item, and
can be verified using UFLverifySignature.

If you pass null, the function will simply validate the HMAC
signature.

com.PureEdge.xfdl.FormNodeP validateHMACWithSecret | 117

Expression Type Description

theStatus IntHolder This is a status flag that reports whether the operation was
successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK — the operation was
successful.

SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.

SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED —the
operation required user input, but could not receive it (for example,
it was run on a server with no user).

Returns

A constant if the verification is successful, or throws a generic exception (UWI Exception) if an error
occurs. The following table lists the possible return values:

Code Status

FormNodeP.UFL_DS OK The signature is verified.

FormNodeP.UFL_DS_ALGORITHMUNAVAILABLE The appropriate verification engine for the
signature is not available.

FormNodeP.UFL_DS F2MATCHSIGNER The certificate does not match the signer’s name.
FormNodeP.UFL_DS FAILEDAUTHENTICATION The signature is invalid or the secret used is
incorrect.
FormNodeP.UFL_DS_HASHCOMPFAILED The document has been tampered with.
FormNodeP.UFL_DS_NOSIGNATURE There is no signature.
FormNodeP.UFL_DS_NOTAUTHENTICATED The signer cannot be authenticated.
FormNodeP.UFL_DS_UNEXPECTED An unexpected error occurred.
FormNodeP.UFL_DS_UNVERIFIABLE The signature cannot be verified.

Example

The following example uses getSignatur e to get the signature object from the signature node, and uses
getDataByPath to get the signer’sidentity from the signature object. It then calls
validateHM ACWithSecr et to validate the signature. Finally, it releases the signature object.

public short checkSi gnat ure(For mNodeP t heSi gnat ureNode, Certificate
t heServerCert)

{

Si gnat ur e t heSi gnat ur eQbj ect ;

String theSecret;

String signer CoormonNane;

Bool eanHol der encodedDat a;

I nt Hol der t heSt at us;

118 | validateHMACWithSecret com.PureEdge.xfdl.FormNodeP

short validation;
t heSi gnat ur eObj ect = theSi gnat ur eNode. get Si gnature();
encodedDat a = new Bool eanHol der () ;

i f ((signerComopnNanme = theSi gnatureCbj ect. get Dat aByPat h(
"Subject: CN', false, encodedData)) == null)

{
}

t hrow new UW Exception("Coul d not deternine signer’s nane.");

/* Include external code that matches the signer’s identity to a shared
secret, and sets theSecret to match. This is nost likely a
dat abase | ookup. */

theStatus = new I ntHol der();

val i dation = t heSi ghat ureNode. val i dat eHVACW t hSecr et (t heSecr et
theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUser StatusType. SUSTATUS_OK)
{

}

t hrow new UW Exception("Validation required user input.");

return(validation);

com.PureEdge.xfdl.FormNodeP validateHMACWithHashedSecret | 119

validateHMACWithHashedSecret

Description

This method acts on a signature node to determine whether an HMAC signature is valid. You must
know the hash of the signer’s shared secret to use this method. The hash of the shared secret should be
available from a corporate database or other system.

This function will also notarize (that is, digitally sign) avalid HMAC signature if you provide a
certificate. Once notarized, you must use the verifySignature method to validate the signature.

Method

public short validateHM ACWithSecret(
byte[] hashedSecret,
Certificate theServerCert,
IntHolder theSatus,
) throws UWI Exception;

Parameters

Expression Type Description

hashedSecret byte [] The shared secret that identifies the user. This should be available
from a corporate database or other system.

If there is more than one shared secret, you must concatenate the
strings with no separating characters, and then hash the combined
secret. For example, if the secrets were “blue” and “red”, you
would pass the hash of “bluered” to the function.

theServerCert Certificate The server certificate. If the HMAC signature is valid, the function
will use the private key of this certificate to digitally sign the HMAC
signature. This signature is appended to the signature item, and
can be verified using UFLverifySignature.

If you pass null, the function will simply validate the HMAC
signature.

120 |

validateHMACWithHashedSecret

Returns

com.PureEdge.xfdl.FormNodeP

Expression Description

Type

theStatus IntHolder

This is a status flag that reports whether the operation was

successful. Possible values are:

SecurityUserStatusType.SUSTATUS_OK — the operation was

successful.

SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.

SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED —the
operation required user input, but could not receive it (for example,
it was run on a server with no user).

A constant if the verification is successful, or throws a generic exception (UWI Exception) if an error
occurs. The following table lists the possible return values:

Code

Status

FormNodeP.UFL_DS OK

The signature is verified.

FormNodeP.UFL_DS_ALGORITHMUNAVAILABL
E

The appropriate verification engine for the
signature is not available.

FormNodeP.UFL_DS_F2MATCHSIGNER

The certificate does not match the signer’s name.

FormNodeP.UFL_DS_FAILEDAUTHENTICATION

The signature is invalid or the secret used is
incorrect.

FormNodeP.UFL_DS_HASHCOMPFAILED

The document has been tampered with.

FormNodeP.UFL_DS_NOSIGNATURE

There is no signature.

FormNodeP.UFL_DS_NOTAUTHENTICATED

The signer cannot be authenticated.

FormNodeP.UFL_DS_UNEXPECTED

An unexpected error occurred.

FormNodeP.UFL_DS_UNVERIFIABLE

The signature cannot be verified.

Example

The following example uses getSignatur e to get the signature object from the signature node, and uses
getDataByPath to get the signer’sidentity from the signature object. Next, it calls
validateHM ACWithSecr et to validate the signature. Finally, it releases the signature object.

public short checkSi gnat ure(For mMNodeP t heSi gnat ur eNode,

t heServerCert)

{

Si gnat ur e t heSi gnat ur eQbj ect ;
byte [] hashedSecret;

String signer CoormonNane;

Bool eanHol der encodedDat a;

| nt Hol der thesSt at us;

Certificate

com.PureEdge.xfdl.FormNodeP validateHMACWithHashedSecret | 121

short validation;
t heSi gnat ur eObj ect = theSi gnat ur eNode. get Si gnature();
encodedDat a = new Bool eanHol der () ;

i f ((signerComopnNanme = theSi gnatureCbj ect. get Dat aByPat h(
"Subject: CN', false, encodedData)) == null)

{
}

t hrow new UW Exception("Coul d not deternine signer’s nane.");

/* Include external code that matches the signer’s identity to a hashed
shared secret, sets hashedSecret to match. This is nost likely a
dat abase | ookup. */

hashedSecret = theHashObj ect. hash(theSecret);

theStatus = new I ntHol der();

val idation = theSi gnatureNQde. val i dat eHVACW t hHashedSecr et (
hashedSecret, theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUser StatusType. SUSTATUS_OK)
{

}

t hrow new UW Exception("Validation required user input.");

return(validation);

122 | verifyAllSignatures com.PureEdge.xfdl.FormNodeP

verifyAllSignatures

Description

This method verifies the correctness of al digital signaturesin a given form whose root node is the
specified abject node. It finds all items of type signature and callsverifySignatur e for each item. Errors
arelogged for al invalid signatures.

Method
public short verifyAllSignatures(
boolean reportAsErrorsFlag
) throws UWI Exception;
Parameters
Expression Type Description
reportAsErrorsFlag boolean Set to true if you want errors about the signatures to be
reported by throwing a UWIException or false if you want the
error code to be returned through the return value.
Returns
A short having one of the following values:
Code Status
FormNodeP.UFL_SIGS OK The signatures are valid.
FormNodeP.UFL_SIGS _NOTOK One or more signatures are broken.
FormNodeP.UFL_SIGS_UNVERIFIED One or more signatures are unverifiable.
If one or more of the signaturesis not valid and the reportAsErrorsklag is true, a generic exception
(UWIException) is thrown.
On error, the method throws a generic exception (UWIException).
Example

In the following example, verifyAllSignatur es determines whether or not all the signaturesin the form
arevalid. If any one of the digital signaturesisnot valid, amessageis printed.

private static void checkSi gnat ures(FormNodeP theForm throws Exception
{

if (theFormverifyAllSignatures(false) == FormodeP. UFL_SI GS_CK)

com.PureEdge.xfdl.FormNodeP verifyAllSignatures | 123

Systemout.printin("All the digital signatures are valid.");

124 | verifySignature

verifySignature

Description

com.PureEdge.xfdl.FormNodeP

This method verifies the correctness of the given digital signature. You call this method on the root of
the form containing the signature you want to verify. This function will check the following conditions:

= The signature item contains mimedata.

= The mimedata contains a hash value and signer certificate.

= Thesigner certificate contains the same ID as that recorded in the signature item’s signer option.

= Thesigner certificate has not expired.

A plain text representation of the form (filtered by the signature item’s filter) is constructed and the
result is hashed. This hash value must match the hash value stored in the signature.

Method
public short verifySignature(
FormNodeP signatureltem,
SringHolder theCertChain,
boolean reportAsErrorsFlag
) throws UWI Exception;
Parameters
Expression Type Description
signatureltem FormNodeP The signature to verify.
theCertChain StringHolder A StringHolder where a text description listing certificates in
the chain of issuance from the signer to the root certifying
authority will be stored. Each entry is followed by two platform-
specific line delimiters (for example, \r\n\r\n under Windows).
reportAsErrorsFlag boolean Set to true if you want errors about the signatures to be
reported by throwing a UWIException or false if you want the
error code to be returned through the return value.
Returns

A short having one of the following values:

Code

Status

FormNodeP.UFL_DS_OK

The signature is verified.

com.PureEdge.xfdl.FormNodeP

verifySignature | 125

Code

Status

FormNodeP.UFL_DS_ALGORITHMUNAVAILABLE

The appropriate verification engine for the
signature is not available.

FormNodeP.UFL_DS_CERTEXPIRED

The certificate has expired.

FormNodeP.UFL_DS_CERTNOTFOUND

The certificate cannot be located.

FormNodeP.UFL_DS_CERTNOTTRUSTED

The certificate is not trusted.

FormNodeP.UFL_DS_CERTREVOKED

The certificate has been revoked.

FormNodeP.UFL_DS_CRLINVALID

The certificate revocation list is invalid.

FormNodeP.UFL_DS_F2MATCHSIGNER

The certificate does not match the signer’s name.

FormNodeP.UFL_DS_HASHCOMPFAILED

The document has been tampered with.

FormNodeP.UFL_DS_ISSUERCERTEXPIRED

The issuer’s certificate has expired.

FormNodeP.UFL_DS_ISSUERINVALID

The issuer is invalid for the certificate used to
sign.

FormNodeP.UFL_DS_
ISSUERKEYUSAGEUNACCEPTABLE

The issuer certificate’s key usage extension does
not match what the key was used for.

FormNodeP.UFL_DS_ISSUERNOTCA

The certificate’s issuer is not a Certificate
Authority.

FormNodeP.UFL_DS_ISSUERNOTFOUND

The issuer’s certificate was not located.

FormNodeP.UFL_DS_ISSUERSIGFAILED

Verification of the issuer’s certificate failed.

FormNodeP.UFL_DS_KEYREVOKED

The key used to create the signature has been
revoked.

FormNodeP.UFL_DS
KEYUSAGEUNACCEPTABLE

The certificiate’s key usage extension does not
match what the key was used for.

FormNodeP.UFL_DS_KRLINVALID

The Key Revocation List is invalid.

UFL_DS_NOSIGNATURE

There is no signature.

UFL_DS_NOTAUTHENTICATED

The signer cannot be authenticated.

FormNodeP.UFL_DS_POLICYUNACCEPTABLE

The certificate’s policy extension does not match
the acceptable policies.

FormNodeP.UFL_DS_SIGNATUREALTERED

The signature has been tampered with.

FormNodeP.UFL_DS_UNEXPECTED

An unexpected error occurred.

FormNodeP.UFL_DS_UNVERIFIABLE

The signature cannot be verified.

If the signature is not valid and the reportAsErrorsFlag is true, a generic exception (UWIException) is

thrown.

On error, the method throws a generic exception (UWIException).

126 | verifySignature com.PureEdge.xfdl.FormNodeP

Example

In the following example, der eferenceEx is used to locate a signature node. verifySignature then
determines whether the signature is valid. If the signature is not valid, a message is printed.

private static void checkSi gnat ure(FormNodeP theForn) throws Exception

{
StringHol der certChain = new StringHol der();

For mNodeP t enpNode;

if ((tenpNode = theForm dereferenceEx(null, "PAGEl.SI GNATURELl", O,
For mMNodeP. UFL_I TEM REFERENCE, null)) == null)

{
}

t hrow new UW Exception("Could not |ocate SIGNATURE node.");

if (theFormverifySi gnature(tenpNode, certChain, false) == 0)
{

}

/[* |f verifySignature returned a value that is equal to the FormNodeP
constant UFL_DS F2MATCHSI GNER, a nessage explaining the error is
di spl ayed. */

Systemout.println("The first signature is valid.");

if (theFormverifySi gnature(tenpNode, certChain, false) ==
For mNodeP. UFL_DS_F2MATCHSI GNER)

{

Systemout.println("The name in the formdoesn’t match the nane in
the signature.");

com.PureEdge.xfdl.FormNodeP writeForm | 127

writeForm

Description

This method will write a form to the specified file or stream. The specified object node is treated as the
root node of the form that should be written. The version number of the form will determine the format
of the output file. You can specify whether to compress the output and whether to observe the transmit/
save settings in the form.

If no format is specified, the default isto write the form in the same format in which it wasread. If the
form in question was created dynamically by your application, writeForm will, by default, write it as
an XFDL form in uncompressed format.

Method

WRITING TO A FILE:

public void writeFor m(
Sring thePath,
FormNodeP triggerItem,
int flags

) throws UWI Exception;

WRITING TO A STREAM:
public void writeFor m(
OutputStream theSream,
FormNodeP triggerItem,
int flags
) throws UWI Exception;

Parameters
Expression Type Description
thePath String This is the path to the file on the local disk to which the form
will be written.
theStream OutputStream This is the stream to which you want to write the form data.
triggerltem FormNodeP This is the item that caused the form to be submitted. Set to

null if you are not using transmits.

128 |

writeForm

com.PureEdge.xfdl.FormNodeP

Expression Type

Description

flags int

The following flags are valid:

FormNodeP.UFL_TRANSMIT_ALLOW allows the transmit
options (that is, transmitdatagroups, transmitgroups,
transmititemrefs, transmititems, transmitoptionrefs,
transmitpagerefs, and transmitoptions) to control which
portions of the form are sent. Without this flag, the entire form
will be sent regardless of the transmit options in the form.

FormNodeP.UFL_SAVE_ALLOW allows the saveformat
option to specify the file format. If no format is specified, the
form is saved in the same format in which it was read.

FormNodeP.UFL_GZIP_COMPRESS causes the form to be
saved as a compressed file with a content-encoding of “gzip”
as the default format.

Note: Specify 0 if you do not want to enable any of the
transmit options.

Returns

Returns nothing if the call is successful, or throws a generic exception (UWI Exception) if an error

Ooccurs.

Example

The following example uses writeForm to write the form in memory to afile on thelocal drive.

private static void saveForm) throws Exception

{

theForm writeForn{"Qutput.xfd", null, 0);

}

com.PureEdge.xfdl.FormNodeP xmIModelUpdate | 129

xmlIModelUpdate

Description
This method updates the XML data model in the form. Thisis nessary if computes have changed the

structure of the data model in some way, such as changing or adding bindings. These sorts of changes
do not take effect until the xmlModelUpdate function is called.

Function

public void xmIM odelUpdate() throws UW I Exception;

Parameters

None.

Returns

Returns nothing if the call is successful, or throws a generic exception (UWI Exception) if an error
occurs.

Example
The following example uses setL iteralByRefEx to change a binding in the form, so that it bindsto a
different option. It then calls xmIM odelUpdate so that the data model reflects the change.
private static void setBinding throws Exception

{

t heForm set Li t eral ByRef Ex(nul |,
"gl obal . gl obal . xm nodel . bi ndi ngs[0] [boundoption]”, 0, null, null,
"PAGEL. FI ELD5. val ue");

t heFor m xm Model Updat e() ;

130 | xmIModelUpdate com.PureEdge.xfdl.FormNodeP

The Hash Class | 131

The Hash Class

The Hash class allows you to hash messages.
= Any application that makes calls to the Hash methods must first import the following class:

com Pur eEdge. security. Hash
= Many of the methodsin the ICS API will throw a generic exception called a UW I Exception if an
error occurs. Import the following class to any .javafiles that call methods from the ICS API:

com Pur eEdge. error. UN Excepti on

132 | hash com.PureEdge.security.Hash

hash
Description
This function hashes a message using the hashing algorithm of your choice.
Method
public byte [] hash(
byte [] theMessage
) throws UWI Exception;
Parameters
Expression Type Description
theMessage byte [] The message you want to hash.
Returns
A hashed message, or throws a generic exception (UWIException) if an error occurs.
Example

The following example uses getSignatur e to get the signature object from the signature node, and uses
getDataByPath to get the signer’sidentity from the signature object. It then retrievesthe signer’s
shared secret from a database, and hashes that secret using the hash method. Finally, it calls

validateHM ACWithHashedSecr et to validate the signature.

public short checkSi gnat ure(For mNodeP t heSi gnat ureNode, Certificate
theServerCert, Hash t heHashObj ect)

{

Si gnat ur e t heSi gnat urebj ect;

byte[] theSecret;

byte [] hashedSecret;

String signer CormonNane;

Bool eanHol der encodedDat a;

I nt Hol der theStat us;

short validation;

t heSi gnat ur eCbj ect = theSi gnat ur eNode. get Si gnat ure();
encodedDat a = new Bool eanHol der () ;
i f ((signerComopnNanme = theSi gnatureCbj ect. get Dat aByPat h(

"Subject: CN', false, encodedData)) == null)
{

t hrow new UW Excepti on("Coul d not deternine signer’s nane.");

com.PureEdge.security.Hash hash | 133

}

/* Include external code that matches the signer’'s identity to a
shared secret and sets theSecret to match. This is nost likely a
dat abase | ookup. */

hashedSecret = theHashObj ect. hash(theSecret);

theStatus = new I ntHol der();

val idation = theSi gnatureNode. val i dat eHVACW t hHashedSecr et (
hashedSecret, theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUser StatusType. SUSTATUS_ OK)
{

}

t hrow new UW Exception("Validation required user input.");

return(validation);

134 | hash com.PureEdge.security.Hash

The IFSSingleton Class | 135

The IFSSingleton Class

The IFSSingleton class provides a static interface to the application’s XFDL object.

= You must import the following class to any .javafiles that need to access an XFDL abject:
com Pur eEdge. | FSSi ngl et on

= Many of the methodsin the ICS API will throw a generic exception called a UW I Exception if an
error occurs. Import the following class to any .javafiles that call methods from the ICS API:

com Pur eEdge. error. UN Excepti on

136 | getFunctionCallManager com.PureEdge.IFSSingleton

getFunctionCallManager

Description

Use this method to retrieve the Function Call Manager. The Function Call Manager maintains alist of

all of the packages and custom functions that are available. As such, you must register al function calls
with the Function Call Manager.

Method

public static XFDL getFunctionCallM anager () throws UWI1Exception;

Parameters

There are no parameters for this method.

Returns

Returnsthe FunctionCallManger object or throws a generic exception (UWI Exception) if an error
occurs.

Example

In the following example, the FciFunctionCall method calls getFunctionCallM anager to obtain the
Function Call Manager object called theFCM.

public Fci FunctionCall (1 FX | FXMan) throws UW Exception

{
Functi onCal | Manager t heFCM

if ((theFCM = | FSSi ngl et on. get Functi onCal | Manager ()) == null)
t hrow new UW Excepti on("Needed Function Call Manager")

com.PureEdge.IFSSingleton getLocalizationManager | 137

getLocalizationManager

Description

Use this method to obtain the L ocalizationM anager object. The L ocalizationM anager object is an
interface through which you can set the language the API usesto report errors.

Method

public static L ocalizationM anager getL ocalizationManager () throws UWI1Exception;

Parameters

There are no parameters for this method.

Returns

The L ocalizationM anager object or throws a generic exception (UWI Exception) if an error occurs.

Example

In the following example, the setL anguage method calls getL ocalizationM anager to obtain the
L ocalizationM anager object called theM anager.

private static void setlLanguage() throws Exception

{

Local i zat i onManager theManager;

t heManager = | FSSi ngl et on. get Local i zati onManager () ;
i f(theManager == null)

t hrow new Exception("Could not find interface");
t heManager . set Def aul t Local e("en_US");

138 | getSecurityManager com.PureEdge.IFSSingleton

getSecurityManager

Description

This function retrieves the Security Manager object. Use the Security Manager object to retrieve the
available hash algorithms.

To avoid a conflict with an existing class in Java (java.lang.SecurityM anager), you must refer to the
Security Manager by the full class name of com.PureEdge.security.SecurityM anager.

Method

public SecurityM anager getSecurityM anager () throws UW I Exception;

Parameters

There are no parameters for this method.

Returns

A Security Manager object, or throws a generic exception (UW I Exception) if an error occurs.

Example

The following example uses getSecurityM anager to get the Security Manager object.
lookupHashAlgorithm isthen called to get the shal hash algorithm.

public Hash get HashAl gorithm();

{
com Pur eEdge. security. SecurityManager theSecurityManager;

Hash t enpHashObj ect;
t heSecurityManager = | FSSi ngl et on. get SecurityManager();
t heHash = theSecurityManager.| ookupHashAl gorithm("shal");

return(theHash);

com.PureEdge.IFSSingleton getXFDL | 139

getXFDL

Description

Use this method to obtain the XFDL abject. The XFDL object is an interface through which you can
accessthe form’sroot node. Asaresult, any program that needsto load an XFDL form must first obtain
the XFDL object.

Method

public static XFDL getXFDL () throws UWIException;

Parameters

There are no parameters for this method.

Returns

The XFDL object or throws a generic exception (UW I Exception) if an error occurs.

Example

In the following example, the loadForm method calls getXFDL to obtain the XFDL object called
theXFDL.

private static void | oadForm() throws Exception
{

XFDL t heXFDL;

For mNodeP t heFor m

t heXFDL = | FSSi ngl et on. get XFDL() ;
i f(theXFDL == null)
t hrow new Exception("Could not find interface");
t heForm = t heXFDL. r eadFor m(" Sanpl e. xfd", 0);
i f(theForm == null)
t hrow new Exception("Could not load form");

140 | getXFDL com.PureEdge.IFSSingleton

The LocalizationManager Class | 141

The LocalizationManager Class

The L ocalizationM anager classincludes amethod that controls which language the API uses to report
errors.

= Any application that makes callsto the L ocalizationM anager methods must first import the
following class:

com Pur eEdge. i 18n. Local i zat i onManager

= Many of the methodsin the ICS API will throw a generic exception called a UW I Exception if an
error occurs. Import the following class to any .javafiles that call methods from the ICS API:

com Pur eEdge. error. UN Excepti on

142 |

setDefaultLocale com.PureEdge.il8n

setDefaultLocale

Description

This function sets which language (or locale) the API uses when reporting errors. By default, the API
uses English (US).

The API supports the following locales:

Language Locale Name

English (US) en_US

French (Quebec) fr_CA
Function

public void setDefaultL ocale(
Sring theLocale
) throws UWIException;

Parameters
Expression Type Description
theLocale String The name of the locale.
Returns
Returns nothing if the call is successful, or throws a generic exception (UWI Exception) if an error
occurs.
Example

In the following example, the language string is checked to determine which locale to use.
setDefaultL ocaleis then called to set the appropriate locale.

public void setlLanguage(String | anguage) throws Exception

{

Local i zati onManager theManager;

t heManager = | FSSi ngl et on. Get Local i zati onManager () ;
i f | anguage. equal s("english")

t heManager . set Def aul t Local e("en_US");
el se

t heManager . set Def aul t Local e("fr_CA");

The SecurityManager Class | 143

The SecurityManager Class

The SecurityManager class includes a method for obtaining hash algorithms.

= Toavoid aconflict with an existing Java class (java.lang.SecurityManager), any application that
makes calls to the SecurityM anager methods must use the full class name:

com Pur eEdge. security. SecurityManager

= Many of the methodsin the ICS API will throw a generic exception called a UW I Exception if an
error occurs. Import the following class to any .javafiles that call methods from the ICS API:

com Pur eEdge. error. UN Excepti on

144 | lookupHashAlgorithm com.PureEdge.security.SecurityManager

lookupHashAlgorithm

Description

This function retrieves a hash object. Use the hash object to hash shared secrets for the
validateHM A CWithHashedSecret function.

Method
public Hash lookupHashAlgorithm(
Sring algName
) throws UWI Exception;
Parameters
Expression Type Description
algName String The name of the hash algorithm you want to retrieve.
The available hash alorithms are shal and md5.
Returns

A hash aobject, or throws a generic exception (UW I Exception) if an error occurs.

Example

The following example uses getSecurityM anager to get the Security Manager object.
lookupHashAlgorithm isthen called to get the shal hash algorithm.

public Hash get HashAl gorithm();

{
com Pur eEdge. security. SecurityManager theSecurityManager;

Hash t enpHashObj ect;
t heSecurityManager = | FSSi ngl et on. get SecurityManager();
t heHash = theSecurityManager. | ookupHashAl gorithn("shal");

return(theHash);

The Signature Class | 145

The Signature Class

The Signature class alows you to get information from Sgnature objects.

= Any application that makes calls to the Signature methods must first import the following class:
com Pur eEdge. security. Signature

= Many of the methodsin the ICS API will throw a generic exception called a UW I Exception if an
error occurs. Import the following class to any .javafiles that call methods from the ICS API:

com Pur eEdge. error. UN Excepti on

146 |

getDataByPath com.PureEdge.security.Signature
getDataByPath
Description
This function retrieves a piece of data from a signature object.
Method
public String getDataByPath(
Sring thePath,
boolean tagData,
BooleanHolder encoded,
) throws UWI Exception;
Parameters
Expression Type Description
thePath String The path to the data you want to retrieve. See the
Notes section below for more information on data
paths.
tagData boolean True if the path should be prepended to the data. If the
path is prepended, a colon and space are used as a
separator.
For example, suppose the path is “Issuer: CN” and the
data is “PureEdge”. If true, the path will be prepended,
producing “Issuer: CN: PureEdge”. If false, the path
will not be prepended, and the result will be
“PureEdge”.
encoded BooleanHolder True if the return data is base 64 encoded. The function
returns binary data in base 64 encoding.
Notes

About Data Paths

Data paths describe the location of information within a certificate, just like file paths describe the
location of files on adisk. You describe the path with a series of colon separated tags. Each tag
represents either apiece of data, or an object that contains further pieces of data (just like directories can

contain files and subdirectories).

For example, to retrieve the version of a certificate, you would use the following data path:

Denogr aphi cs

com.PureEdge.security.Signature getDataByPath | 147

However, to retrieve the subject’s common name, you first need to locate the subject, then the common
name within the subject, as follows:

Subj ect: CN
Some tags may contain more than one piece of information. For example, the issuer’s organizational

unit may contain a number of entries. You can either retrieve al of the entries as acomma separated list,
or you can specify a specific entry by using a zero-indexed element number.

For example, the following path would retrieve a comma separated list:

| ssuer: UO

While adding an element number of 0 would retrieve the first organizational unit in the list, as shown:
Issuer: UO O

Signhature Tags

The following table lists the tags available in a signature object. Note that Clickwrap and HMAC
Clickwrap signatures have additional tags (detailed in Clickwrap Sgnature Tags and HMAC Clickwrap

Tags).

Tag Description

Engine The security engine used to create the signature.

SigningCert The certificate used to create the signature. This is an object that contains
further information, as detailed in Certificate Tags. Note that this object does
not exist for Clickwrap or HMAC Clickwrap signatures.

HashAlg The hash algorithm used to create the signature.

CreateDate The date on which the signature was created.

Demographics A string describing the signature.

LastVerificationStatus A short representing the verification status of the signature. This is updated

whenever the signature is verified. See “verifySignature” on page 124 for a
complete list of the possible values.

Clickwrap Signature Tags

The following table lists additional tags available in both Clickwrap and HMAC Clickwrap signatures.
Note that HMAC Clickwrap signatures have further tags (detailed in HMAC Clickwrap Tags).

Tag Description

TitleText The text for the Windows title bar of the signature dialog box.
MainPrompt The text for the title portion of the signature dialog box.
MainText The text for the text portion of the signature dialog box.
Question1Text The first question in the signature dialog box.

AnswerlText The signer’s answer.

148 |

getDataByPath

com.PureEdge.security.Signature

Tag Description

Question2Text The second question in the signature dialog box.
Answer2Text The signer’s answer.

Question3Text The third question in the signature dialog box.
Answer3Text The signer’s answer.

Question4Text The fourht question in the signature dialog box.
Answer4Text The signer’s answer.

Question5Text The fifth question in the signature dialog box.
Answer5Text The signer’s answer.

EchoPrompt Text that the sigher must echo to create a signature.
EchoText The signer’s response to the echo text.
ButtonPrompt The text that provides instructions for the Clickwrap signature buttons.
AcceptText The text for the accept signature button.

RejectText The text for the reject signature button.

Certificate Tags

The following table lists the tags available in a certificate object. Note that Clickwrap and HMAC
Clickwrap signatures do not contain these tags.

Tag Description

Subject The subject’s distinguished name. This is an object that contains further
information, as detailed in Distinguished Name Tags.

Issuer The issuer’s distinguished name. This is an object that contains further
information, as detailed in Distinguished Name Tags.

IssuerCert The issuer’s certificate. This is an object that contains the complete list of
certificate tags.

Engine The security engine that generated the certificate. This is an object that contains
further information, as detailed in Security Engine Tags.

Version The certificate version.

BeginDate The date on which the certificate became valid.

EndDate The date on which the certificate expires.

Serial The certificate’s serial number.

SignatureAlg The signature algorithm used to sign the certificate.

PublicKey The certificate’s public key.

FriendlyName

The certificate’s friendly name.

com.PureEdge.security.Signature getDataByPath | 149

Distinguished Name Tags

The following table lists the tags available in a distinguished name object. Note that Clickwrap and
HMAC Clickwrap signatures do not contain these tags.

Tag Description
CN The common name.
E The email address.
The title.
(@) The organization.
ou The organizational unit.
C The country.
The locality.
ST The state.
All The entire distinguished name.

HMAC Clickwrap Tags

The following table lists the tags available in HMAC Clickwrap signature. Note that thesetags are in
addition to both the regular Signature Tags and the Clickwrap Sgnature Tags.

Tag Description

HMACSigner A string indicating which answers store the signer’s ID.

HMACSecret A string indicating which answers store the signer’s secret.

Notarization The notarizing signatures. This is one or more signature objects that contain

further information, as detailed in Signature Tags. There can be any number of
notarizing signatures. Use an element number to retrieve a specific signature. For
example, to get the first notarizing signature use:

Not ari zation: O
If no element number is provided, the data will be retrieved from the first valid

notarizing signature found. If no valid notarizing signatures are found, the method
will return null.

Security Engine Tags
The following table lists the tags avail able in the security engine object:

Tag Description

Name The name of the security engine.

Help The help text for the security engine.

150 | getDataByPath com.PureEdge.security.Signature

Tag Description

HashAlg A has algorithm supported by the security engine.

Returns

A string containing the certificate data (null if no dataisfound), or throws a generic exception
(UWIException) if an error occurs.

Example

The following example uses getSignatur e to get the signature object from the signature node, and uses
getDataByPath to get the signer’sidentity from the signature object. It then calls
validateHM ACWithSecr et to validate the signature. Finally, it releases the signature object.

public short checkSi gnat ure(For mNodeP t heSi gnat ureNode, Certificate
theServerCert)

{

Si gnat ur e t heSi gnat urebj ect;

String theSecret;

String signer CoormonNane;

Bool eanHol der encodedDat a;

| nt Hol der t heSt at us;

short validation;

t heSi gnat ur eObj ect = theSi gnat ur eNode. get Si gnat ure();
encodedDat a = new Bool eanHol der () ;

i f ((signerComopnNanme = theSi gnatureObject. get Dat aByPat h(
"Subject: CN', false, encodedData)) == null)

{
}

t hr ow new UW Exception("Coul d not deternine signer’s nane.");

/* I nclude external code that matches the signer’s identity to a shared
secret, and sets theSecret to match. This is nost likely a
dat abase | ookup. */

theStatus = new I ntHol der();

val i dation = t heSi ghat ureNode. val i dat eHVACW t hSecr et (t heSecr et
theServerCert, theStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUser StatusType. SUSTATUS_OK)
{

}

t hrow new UW Exception("Validation required user input.");

return(validation);

The XFDL Class | 151

The XFDL Class

The XFDL class encapsulates methods that create the root nodes of XFDL forms, as well as methods
that handle administrative tasks related to the Form Library.

= Tousethe XFDL methodsin an application, import the following class to any .javafiles that call
XFDL methods:

com Pur eEdge. xf dl . XFDL

= Many of the methodsin the ICS API will throw a generic exception called a UW I Exception if an
error occurs. Import the following class to any .javafiles that call methods from the ICS API:

com Pur eEdge. error. UN Excepti on

152 | create

com.PureEdge.XFDL

create
Description
This method will create anew For mNodeP and attach it to the form hierarchy at the indicated | ocation.
Once created, the type and identifier of a FormNodeP cannot be changed.
Note that you can also use setL iter al ByRefEXx to create FormNodePs at the option level and below.
Using setLiteralByRefEX is often easier and faster than using create.
Method
public FormNodeP create(
FormNodeP aNode,
int where,
Sring theType,
Sring theliteral,
Sring theFormula,
Sring theldentifier
) throws UWI Exception;
Parameters
Expression Type Description
aNode FormNodeP The new FormNodeP will be placed in the form hierarchy
relative to this node. If null, this creates a new FormNodeP
hierarchy (a new form).
where int A constant that describes the location, relative to the subject

object, in which the new node should be placed:

XFDL.UFL_APPEND_CHILD adds the new node as the last
child of the subject object.

XFDL.UFL_AFTER_SIBLING — adds the new node as a
sibling of the subject object, placing it immediately after that
node.

XFDL.UFL_BEFORE_SIBLING — adds the new node as a
sibling of the subject object, placing it immediately before that
node.

Note: If the parameter aNode is null, then this
parameter should be set to 0.

com.PureEdge.XFDL create | 153

Expression Type Description

theType String The type to assign to the FormNodeP being created. This is
only necessary for page and item nodes. Use null for all other
nodes. The type cannot be changed after the node has been
created.

If you are creating a non-XFDL node, you must also include
the namespace that the node should belong to, as shown:

<nanespace prefix>: <type>
For example:
custom nyl tem

If you do not provide a namespace, the function will assign the
default namespace for the form.

theLiteral String The literal to assign to this FormNodeP. null is valid.

theFormula String The formula to assign to this FormNodeP. null is valid.

theldentifier String The identifier to assign to this FormNodeP. The identifier
cannot be changed after the node has been created. null is
valid.

If you are creating an option or argument level node, this must
also include the namespace the node should belong to. Use
the following format:

<namespace prefix>: <type>
For example:

cust om myOpt i on

If you do not provide a namespace, the function will assign the
default namespace for the form.

Returns

The new FormNodeP or throws a generic exception (UW I Exception) if an error occurs.

Example

In the following example, der eferenceEx is used to locate a specific node. create isthen used to create
asibling to that node and to place it directly after that node in the form structure.

private static void addPi cLabel (FormNodeP theForm) throws Exception
{

For mNodeP t enpNode;

XFDL t heXFDL;

154 | create com.PureEdge.XFDL

if ((theXFDL = (XFDL) I FXMan. | ookupl nt er f ace(XFDL. XFDL_| NTERFACE_NANME,
XFDL. XFDL_CURRENT_VERSION, O, null, null)) == null)
t hrow new UW Exception("Could not find interface");

/* Call theForm dereference to | ocate the node for the gender |abel item

*/
if ((tenpNode = theForm dereferenceEx(null, "PAGEl. GENDERLABEL", O,
For mNodeP. UFL_I TEM REFERENCE, null)) == null)
{
t hrow new UW Exception("Coul d not | ocate GENDERLABEL node.");
}

tempNode = theXFDL. creat e(tenpNode, XFDL. UFL_AFTER SI BLI NG,
"label™, null, null,"Pl CLABEL")

com.PureEdge.XFDL getEngineCertificateList | 155

getEngineCertificatelList

Description

This function locates all available certificates for a particular signing engine.

Method
public Certificate [] getCertificatelist(
Sring engineName,
IntHolder theSatus,
) throws UWI Exception;
Parameters
Expression Type Description
engineName String The name of the signing engine. Valid signing engines include:
Generic RSA, CryptoAPI, Netscape, and Entrust. (Note that
Generic RSA is the union of CryptoAPI and Netscape.)
theStatus IntHolder This is a status flag that reports whether the operation was
successful. Possible values are:
SecurityUserStatusType.SUSTATUS_OK — the operation was
successful.
SecurityUserStatusType.SUSTATUS_CANCELLED — the
operation was cancelled by the user.
SecurityUserStatusType.SUSTATUS_INPUT_REQUIRED —the
operation required user input, but could not receive it (for example,
it was run on a server with no user).
Returns
An array containing the list of certificates objects.
Example

The following method uses getXFDL and getEngineCertificatel ist to obtain get alist of valid
certificates for the CryptoAPI signing engine. Next, the method cycles through the returned certificates
and uses getDataByPath on the certificates to find the certificate with a common name of “ PureEdge
Server”. getDataByPath is then used on the signature object to retrieve the common name from the
existing signature, which is used to retrieve the a shared secret from a database. The method then uses
validateHM ACWithSecr et to validate the signature and notarize it using the server certificate.

156 | getEngineCertificateList com.PureEdge.XFDL

public short serverNotarize(FormNodeP t heSi gnat ureNode) throws
UW Exception

{

XFDL t heXFDL;

I nt Hol der theCert St at us;

I nt Hol der theSi gSt at us;
Certificate [] certlList;

Si gnat ur e t heSi gnat ur eQbj ect;
String theSecret;

String signer CormonNane;

bool eanHol der encodedDat a;
int certCount;

int correctCert = -1;

int i;

short validation;

if ((theXFDL = I FSSingl eton.get XFDL()) == null)
{

}

theCert Status = new I nt Hol der ();

t hrow new Exception("Could not find interface");

if ((certList = theXFDL. get Engi neCertificatelList("CryptoAPl",

theCert Status)) == null)
{ t hrow new Exception("Could not |ocate any certificates.");
}
if (theStatus.value == SecurityUser StatusType. SUSTATUS_| NPUT_REQUI RED)
{ t hrow new UW Exception("User input required to sign form™");
}

/* Loop through the certificates to find the PureEdge Server
certificate */

certCount = certlList.|ength;
encodedDat a = new Bool eanHol der () ;

for (i=0; i<certCount; i++)

{
si gner CormonName = certList[i].getDataByPath("Subject: CN', fal se,
encodedDat a) ;
i f (signerConmonNane. equal s(" PureEdge Server"))
{
correctCert =1i;
br eak;
}
}
if (correctCert == -1)

com.PureEdge.XFDL getEngineCertificateList | 157

t hrow new UW Exception("Could not |ocate required certificate");

}

/* Get the signature object. */

t heSi gnat ureCbj ect = theSi gnat ur eNode. get Si gnature();

/* Get the signer’s comon nanme fromthe signature object */
encodedDat a = new Bool eanHol der () ;

i f ((signerComopnNanme = theSi gnatureCbject. get Dat aByPat h(
"Subject: CN', false, encodedData)) == null)

{
}

t hrow new UW Exception("Coul d not deternine signer’s nane.");

/* I nclude external code that matches the signer’s identity to a shared
secret, and sets theSecret to match. This is nost likely a
dat abase | ookup. */

t heSi gStat us = new I nt Hol der ();

/* Validate the signhature and notarize using the server certificate */

val i dation = t heSi ghat ureNode. val i dat eHMACW t hSecr et (t heSecr et
certList[correctCert], theSigStatus);

/* Check the status in case the process required user input. */

if (theStatus.value != SecurityUser StatusType. SUSTATUS_OK)
{

}

t hrow new UW Exception("Validation required user input.");

return(validation);

158 | isDigitalSignaturesAvailable com.PureEdge.XFDL

isDigitalSignaturesAvailable

Description

This method is used to determine whether digital signatures are available on this computer.

Method

public boolean isDigital SignaturesAvailable() throws UWI Exception;

Parameters

There are no parameters for this method.

Returns

true if digital signatures are available on this computer; otherwise, false. On error, the method throws a
generic exception (UW I Exception).

Example

In the following example, isDigital Signatur esAvailable is used to determine whether or not digital
signatures are available. A messageis then printed which indicates the avail ability of digital signatures.

private static void sigsAvail able() throws UWException

{
XFDL t heXFDL;

if ((theXFDL = (XFDL) I FXMan. | ookupl nt er face(XFDL. XFDL_| NTERFACE_NAME,
XFDL. XFDL_CURRENT_VERSI ON, O, null, null)) == null)
t hrow new Exception(“Could not find interface”);

if (theXFDL.isDigital SignaturesAvail able()== true)

{
Systemout.printin("Digital signatures are available.");
}
el se
{
Systemout.println("Digital signatures are not available.");
}

com.PureEdge.XFDL readForm | 159

readForm

Description

This method will read aform into memory from the specified file or stream.

Method

READING A FILE:

public FormNodeP readFor m(
Sring theForm,
int flags

) throws UWI Exception;

READING A STREAM:

public FormNodeP readFor m(
I nputStream theSream,
int flags

) throws UWI Exception;

Parameters
Expression Type Description
theForm String This is the path and filename of the source file on the local

disk.

theStream InputStream This is the stream that contains the form data.

160 |

readForm

Returns

Notes

com.PureEdge.XFDL

Expression Type Description

flags int The following flags cause special behaviors. If using multiple
fags, combine them using a bitwise OR. For example:

XFDL. UFL_AUTOCOVPUTE_OFF |
XFDL. UFL_AUTOCREATE_FORMATS OFF

0 — no special behavior.

XFDL.UFL_AUTOCOMPUTE_OFF — Reads the form into
memory, but disables the compute system so that no
computes are evaluated.

XFDL.UFL_AUTOCREATE_CONTROLLED_OFF — Reads
the form into memory, but disables the creation of all options
that are maintained only in memory (for example, itemnext,
itemprevious, pagenext, pageprevious, and so on).

XFDL.UFL_AUTOCREATE_FORMATS_ OFF — Reads the
form into memory, but disables the evaluation of all format
options.

XFDL.UFL_SERVER_SPEED_FLAGS — Turns off the
following features: computes, automatic formatting, duplicate
sid detection, the event model, and relative page and item
tags (for example, itemprevious, itemnext, and so on). This is
intended to decrease server processing times.

Returns a new FormNodeP that isthe root node of the form, or throws a generic exception
(UWIException) if an error occurs.

Duplicate Scope IDs

If aform contains duplicate scope IDs (for example, two items on the same page with the same SID),
readForm will fail to read the form and will return an error. This enforces correct XFDL syntax, and
eliminates certain security risks that exist when duplicate scope |Ds appear in signed forms.

Digital Signatures

When aform containing one or more digital signaturesisread, the signatureswill be verified. The result
of the verification is stored in aflag that can be checked by calling getSignatureVerificationSatus.

Note that thisflag is only set by readForm, and its value will not be adjusted by changes made to the
form after it has been read. This means that calls such as setLiteralEx may actually break a signature
(by changing the value of asigned item), but that this will not adjust the flag's value. To verify a
signature after changes have been made to aform, it is best to use verifyAllSignatures.

com.PureEdge.XFDL readForm | 161

Note that when aform is signed, all signed computes are frozen at their start val ue (regardless of
whether the compute engine is disabled).

Example

The following example demonstrates the use of readFor m to load aform into memory, and then returns
to the root node of the form.

private static FornmNodeP | oadForn{) throws Exception

{
XFDL t heXFDL;

f or MNodeP t heForm

if ((theXFDL = | FSSingl eton.get XFDL()) == null)
t hrow new Exception("Could not find interface");

if ((theForm = t heXFDL. readFor (" fornSanpl e. xfd", 0)) == null)
t hr ow new Exception("Could not load form");

return(theForm;

162 | readForm com.PureEdge.XFDL

Introduction to the FCI Library | 163

Introduction to the FCI Library

The Function Call Interface (FCI) APl provides a means for creating extremely powerful form
applicationsin a simple and elegant manner.

The FCI Library is a collection of methods for devel oping custom-built functions that form devel opers
may call from XFDL forms. By creating custom functions, you can extend the capabilities of forms
without requiring an upgrade to either your forms software or the form description language (XFDL).
Using the methods from this library you can:

= Create packages of functionsfor forms.
= Set up the packages as extensions for ICS products, such as Viewer or Designer.

= Determine how and when the functions are used. For example, you can specify that a function
should run when aform opens, when it closes and so on.

About Functions, Packages and Extensions

The purpose of the FCI is to make the functionality of forms extensible without requiring updates to
your formsdriver software. This APl alowsyou to create self-contained modul es called IFX Extensions
that provide packages of functionsfor usein XFDL forms.

Note: Theformsdriver softwareisany application that initializes and calls on the ICS API.

Functions can be used almost anywhere in an XFDL form; the appropriateness of their use depends
mainly on their behavior. For instance the XFDL Specification contains a default package of functions
called system. Every application built with the APl version 4.4 or greater can use these functions.

Functions are grouped together to form packages. When you call a function from aform, you must
include the function’s package namein the call. For example, the function beep is part of the package
called my_funcs. To call the beep function from aform and assign the result to the form option do_beep
you would type the following:

<l abel sid = "do_beep">
<val ue conpute = "ny_funcs. beep()"></val ue>
</ | abel >

The most common use of afunction isto return a value that is used to set aform option, such asthe
value of afield. For example, the toupper function in the system package, which convertsa string to
upper case and returns the result, might be used to set the value of a particular form field. This method
could take as its sole argument the value of alabel elsewhere on the form (or on another form) and
convert it to upper case as follows:

<l abel sid = "SoneLabel ">

<val ue>"1 am a | abel "</ val ue>
</ | abel >
<field sid = "SoneFi el d">

<si ze>

<ae>20</ ae>
<ae>1</ ae>

164 |

About the Function Call Interface (FCI)

</ size>
<val ue conpute = "system toupper (SoneLabel . val ue) " ></val ue>
</field>

To create a package of functions you must create an IFX extension. The IFX extension provides services
for function calls viaa FunctionCall object. The FunctionCall object contains your package(s) of
custom-built functions.

P, S PN, s,
- LA Lal -t
PACKAGE OF CUSTOM
FUNCTIONS

FUNCTION CALL OBJECT
EXTENSION CLASS

Refer to the “ The FCI Extension Architecture” on page 165 for more information. Or, for a practical
guide to building your own extensions and functions refer to the section called “ Getting Started with the
FCI Library” on page 1609.

Use the following rulesto help you define your own packages and extensions:
= Each package can contain multiple functions.

= Each extension can contain multiple packages, however it is easier to define one package per
extension.

= All package names must contain an underscore. PureEdge reserves all other package names. Refer
to page 176 for more information.

s The XFDL Specification contains a default package of functions called system. Every application
built with the API version 4.4 or greater can use these functions.

= You cannot add to the system package of functions. For details on the system functions, see the
XFDL Specification.

Once you have created your IFX extensions you can embed them directly into XFDL forms, or you can
distribute them to users as Java Archivefiles (JARS) or as ZIP files. Refer to “ Distributing IFX
Extensions for Testing or Use” on page 181 for more information.

Note: Inorder to view the forms provided with this API, you must have a licensed or evaluation
copy of ICSViewer installed. To download an evaluation copy of the Viewer, refer to the PureEdge
web site at: www.PureEdge.com.

About the Function Call Interface (FCI)

The FCl isitself an IFX extension. It is currently only available for Windows 32-bit applications. A set
of Javawrapper classes, supplied as a Java Archivefile (JAR file) or ZIP file, provide a Javainterface
tothe DLL.

About the Function Call Interface (FCI) | 165

How the Form and FCI Libraries Work Together

The Form Library provides developers with tools for accessing and manipulating XFDL forms as
structured data types. For instance, methods in the Form Library will provide your applications with a
means for reading and writing forms, retrieving information contained in form elements or assigning
information to the elements of aform. For more information about the Form Library refer to page.

The FCI Library of methods allows you to create an |FX extension structure that contains one or more
packages of your custom functions.

Once you have set up the framework for your custom functions you can use Java system methods, Form
Library methods or even other FCI methods to implement the details of each function.

_g;.'ia.ﬁ e, _g;.’l'e.ﬁ _,*;.%.:J aF, _@;.%.:J _e*;-"v.:, _y;;n.ﬁ _.ﬂ?"v,:,

~pt eyt spt ~rt ert eps ~pt epr epr

JAVA FORM API JAVA SYSTEM JAVA FCI
METHOD METHOD METHOD

@““"q‘! St ev“"‘*a,f _q“"’.'?a,,f
SORp 0O O S0
~re ~rs ~rs ~rs
PACKAGE OF CUSTOM
FUNCTIONS

~ FUNCTION CALL OBJECT

EXTENSION CLASS

SN B N
~rs pl o4
JAVA FCI
METHOD

The FCI Extension Architecture

IFX extensions can exist in any of the following locations:

= Theextensionsfolder of the ICS product that will use the extension (for example, ICS Viewer or
Designer products).

= The APl extensions folder, <Windows System>\PureEdge\extensions.

= The Java source folder, <Windows System>\PureEdge\java\source.
= Enclosed within XFDL forms.

166 | About the Function Call Interface (FCI)

When the Forms System isiinitialized, the API checks for IFX extensions. If it finds any, it callsthe
initialization method for each extension and passes each method an object called the IFX Manager.

|/ PO o I g

EXTENSION CLASS

1. THE IFS AP| PASSES EACH METHOD AN OBJECT CALLED THE
INTERNETFORMS EXTENSION MANAGER OR THE IFX MANAGER.

As part of the initialization, those extensions that provide a function call interface create one or more
FunctionCall objects.

FUNCTION CALL OBJECT
EXTENSION CLASS

2. THE EXTENSION CLASS CREATES A
FUNCTION CALL OBJECT

Then, each FunctionCall object requests a FunctionCallM anager object from the IFX Manager.

EXTENSION FUNCTION CALL
MANAGER MAMNAGER

FUNCTION CALL OBJECT

EXTENSION CLASS

3. THE FUNCTION CALL OBJECT REQUESTS
THE FUNCTION CALL MANAGER FROM THE
EXTENSION MANAGER

About the Function Call Interface (FCI) | 167

Each FunctionCall object registers itself with the IFX Manager as a function call and then registers
your custom-built functions and corresponding packages with the Function Call Manager.

| extENSION
MAMNAGER
(REGSTERED) % (REGISTERED)——
FUNCTION CALL OBJECT
EXTEMNSION CLASS

4. THE FUNCTION CALL OBJECT REGISTERS ITSELF
WITH THE EXTENSION MANAGER AS A FUNCTION CALL.

ATh, i i %

SN e i,
1 :1_..“ :.-"..‘ :_l..__: :.-".“ : =t el e e -
VAT T s CUSTOM
F A T N L FUNCTIONS
. ‘ FUNCTION
R, MANAGER

FUNCTION CALL DBJECT PACKAGE

EXTENSIOM CLASS

5. THE FUNCTION CALL OBJECT REGISTERS IT'S FUNCTIONS
AND CORRESPONDING PACKAGES WITH THE FUNCTION CALL MANAGER.

Thefinal result isan IFX extension containing a registered FunctionCall object. The registered
FunctionCall object contains your package of custom functions.

T
A, N, A
J":’ J"-r’ J"\-J"J J":’
PACKAGE OF CUSTOM
FUNCTIONS

REGISTERED)
| FUNCTIONCALLOBJECT |

EXTENSION CLASS

168 | About the Function Call Interface (FCI)

When afunction iscalled in aform, the forms driver requests the package and function from the API.
The API will use the Function Call Manager to locate the FunctionCall object that contains the
reguested function and evauate it.

When a Function is called in a form AN s e,
Fé nps e ps epr

L1 PACKAGE OF CUSTOM

FORMS IF2 FUNCTION CALL - FUNCTIONS
DRIVER [r‘ apt H wmanacer [={ FunctionCallEvaluate)

)] FUNCTION CALL OBJECT
The forms drivar will request

the: packages and fundion
the packige and EXTENSION CLASS

Note: Theformsdriver softwareisany application that initializes and calls the ICS API.

Getting Started with the FCI Library | 169

Getting Started with the FCI Library

This section acts as both a reference and a tutorial on the Function Call Interface Library. A series of
practical examplesis provided which you may work through to build a package of functions called
sample_package. This section shows you how to build sample_package and one function called
convertDate that converts a date to alanguage and format specific to another country. Try adding other
functions to the package for more practice using the FCI Library of methods.

Although the FCI Library contains many methods, you only need to use afew of themto createasimple
package of functions. These are:

= lookuplnterface

= registerinterface

= registerFunctionCall
= evauate

= hep

The remaining FCI methods allow you to customize the behavior of your functions and extensions. For
example, you can attach additional information to a particular extension, or get alist of currently regis-
tered extensions.

Refer to the “FCI Library Quick Reference Guide” on page 185 for a detailed description of the classes
and methods used in thisAPI.

Note: Before you can build extensions and functions using the FCI methods, you must set up your
devel opment environment. Refer to the ICS API Installation and Setup Guide for more information.

Creating Extensions with the FCI methods

The following table is a guide for creating extensions using the Function Call Interface. Refer to the
corresponding page numbers for more details:

Procedure Page
Install the Java Edition of the ICS API and related files, as outlined in the ICS API N/A
Installation and Setup Guide.

Set up the IFX extension. 170
Create the Extension class. 170
Create the extension initialization method. 171
Create a new FunctionCall object. 171
Set up the function call. 172
Create the FunctionCall class. 172

Retrieve the Function Call Manager. 173

170 | Setting up the IFX Extension

Procedure Page
Register each FunctionCall object with the IFX Manager. 174
Register your package(s) of custom functions with the Function Call Manager. 175
Implement your custom functions. 176
Provide help information for each of your functions. 178
Build the IFX extension. 179
Distribute the IFX extension for Testing or Use. 181

Setting up the IFX Extension

Creating the Extension class

When the Forms System isinitialized, the ICS API checks for existing extensions and calls the
initialization method (extensionl nit) for each extension. Your first step in creating a function call isto
create an Extension classthat generates a new FunctionCall object. Follow the procedure below to
create the Extension class called FCI Extension:

1. Create anew Java source file called FCIExtension.java.

2. Definethe Java package. For example:

com your conpany. sanpl es;

3. Import the following files and any other required files to any Javafiles that call FCl methods.
These lines must be placed before any class or interface definitions:

i mport
i mport
i mport
i mport
i mport
i nport
i mport
i mport

com Pur eEdge
com Pur eEdge
com Pur eEdge

com Pur eEdge.
com Pur eEdge.
com Pur eEdge.
com Pur eEdge.
com Pur eEdge.

S fXCTEX

. i fx. Ext ensi onl npl Base;

.1 fx. Ext ensi on;

xfdl . FunctionCal | ;

xfdl . Functi onCal | Manager ;
xf dl . For mNodeP;

| FSUser Dat aHol der ;

error. UN Excepti on;

Note: If you are using methods from the Form Library, you must import the necessary packages.
Refer to page page 25 for more information.

4. Create an Extension class that extends the pre-defined super class
com.PureEdge.ifx.Extensionl mplBase and implements the pre-defined interface Extension.

= Inthefollowing example the name of the extension is FCIExtension.

public class FCl Ext ensi on extends Extensionlnpl Base inplenents
Ext ensi on

{
}

/*

Addi ti onal

code renoved */

Setting up the IFX Extension | 171

Note: Itisagood idea for your Extension class to extend the super class
com.PureEdge.ifx.Extensionl mplBase since the superclass takes care of many housekeeping
methods which must be implemented.

Implementing the extension initialization method
The ICS API will initialize an IFX extension by calling the extensionl nit method and passing the
method an object known asthe IFX Manager.
5. Implement the extensionl nit method as part of the Extension class.

= extensionlnit isthe main function within the Extension interface. It is responsible for the
registration of all the services that the extension provides.

= Thefollowing is an example of the extensionl nit method in the FCI Extension class.

public class FCl Ext ensi on extends Extensionlnpl Base inpl enments

Ext ensi on
{
public void extensionlnit(lFX |FXVan) throws UW Exception
{
/* Additional code renoved */
}

}
= ThelFXMan object represents the IFX Manager. Through this object all other objects and
services can be reached.

= UWIException isageneric exception.

Creating a new FunctionCall object
The extensionl nit method creates a new FunctionCall object that contains your custom-built
functions.

To create a new FunctionCall object you must define a FunctionCall class that contains your custom
functions. Refer to “ Setting up the FunctionCall Class’ on page 172 for more details.

6. Declare anew FunctionCall object before you create it in the extensionl nit method.

= Thefollowing example from the FCI Extension class declares a FunctionCall object called
theFunctionObj ect.

public class FCl Ext ensi on extends Extensionlnpl Base inpl ements
Ext ensi on

{

private FunctionCall theFunctionObject;

public void extensionlnit(lFX |FXVan) throws UW Exception
{

}

/* Additional code renobved */

172 | Setting up the FunctionCall Class

7. Create anew FunctionCall object inside the extensionl nit method, by calling the FunctionCall
class constructor that you will build in the next section.

= Inthefollowing example, extensionlnit creates a new FunctionCall object by calling the
FunctionCall class constructor FciFunctionCall and passing it the IFX Manager.

public class FCl Ext ensi on extends Extensionlnpl Base inplenents
Ext ensi on

{

private FunctionCall theFunctionObject;

public void extensionlnit(lFX |FXMan) throws UW Exception
{

}

thi s.theFuncti onObj ect = new Fci Functi onCal | (I FXMVan) ;

Setting up the FunctionCall Class

Creating a FunctionCall class

The FunctionCall class contains definitions for your custom functions. It also registers the
FunctionCall object and each of the custom functionsthat it supports with the Forms System so that the
functions and packages that it contains will be recognized.

8. Create anew Javasourcefile called FciFunctionCall.java.
9. Definethe Java package. For example:

com your conpany. sanpl es;

10. Import the following API packages:

com Pur eEdge. i fx. | FX

com Pur eEdge. xf dl . For rNodeP

com Pur eEdge. xfdl . Functi onCal | Manager
com Pur eEdge. xfdl . Functi onCal | | npl Base
com Pur eEdge. xfdl . Functi onCal |

com Pur eEdge. error. UN Excepti on

11. Import any other required files. In this case the following files are needed to implement the
convertDate function:

java.util.Date
java.util.Local e

j ava. t ext . Dat eFor mat

j ava. t ext . Si npl eDat eFor mat
j ava. text . ParseException

12. Create aFunctionCall classthat extends the pre-defined superclass
com.PureEdge.xfdl.FunctionCalll mplBase and implements the pre-defined interface
FunctionCall.

= Inthefollowing example the name of the FunctionCall classis FciFunctionCall.

Setting up the FunctionCall Class | 173

public class Fci FunctionCall extends FunctionCalll npl Base inpl enents
Functi onCal |

/* Additional code renoved */

}

13. Define a unique identification number for each custom function that you are going to create using
the FCI.

= Inthefollowing example, FciFunctionCall contains a function called convertDate that
converts any date to the date format and language of a specific country. The convertDate
function in FciFunctionCall has an ID number of 1:

public class Fci FunctionCall extends FunctionCall |l npl Base i npl enents
Functi onCal |

{
public static final int CONVERTDATE = 1,

/* Additional code renoved */
}
14. Define a FunctionCall class constructor that takes as its parameter the IFX Manager.
= Inthefollowing example, the constructor for the FciFunctionCall classis FciFunctionCall.

public class Fci FunctionCall extends FunctionCalllnpl Base inpl enents
Functi onCal |

{
public static final int CONVERTDATE = 1;

publ i c Fci FunctionCall (1 FX | FXMan) throws UW Exception
{

}

/* Additional code renoved */

}
= ThelFXMan object represents the IFX Manager. Through this object all other objects and
services can be reached.

= UWIEXxception isageneric exception.

Retrieving the Function Call Manager

The Function Call Manager is used to handle services specific to function calls, such as handling
reguests for a particular function. The Function Call Manager is represented by a
FunctionCallM anager object.

15. Declare the Function Call Manager before requesting it from the IFX Manager.

= Inthefollowing example, the FciFunctionCall constructor declares the Function Call
Manager with the type FunctionCallM anager.

public Fci FunctionCall (1 FX | FXMan) throws UW Exception
{

}

FunctionCal | Manager theFCM

174 |

Setting up the FunctionCall Class

16. Usethel FSSingleton method getFunctionCallM anager in the function call constructor to request
aFunctionCallM anager object from the IFX Manager.

= ThegetFunctionCallManager call requests the Function Call Manager from the I|FX
Manager.

= Thereturn value of the getFunctionCallManager method is a generic object, and must be
typecast to the object type you have requested. In this case, the object returned from
getFunctionCallManager istypecast to FunctionCallM anager.

= Inthefollowing examplethe FciFunctionCall constructor regquests the Function Call Manager
(theFCM). Noticethat before the Function Call Manager isreturned, it isexplicitly cast to the
type FunctionCallM anager .

public Fci FunctionCall (1 FX | FXMan) throws UW Exception

{
Functi onCal | Manager theFCM

if ((theFCM = | FSSi ngl et on. get Functi onCal | Manager ()) == null)
t hrow new UW Excepti on("Needed Function Call Manager");

Note: For detailed information about the getFunctionCallManager method, including a
description of its parameters, refer to “ getFunctionCallManager” on page 136.

Registering the FunctionCall object with the IFX Manager

Each FunctionCall object registersitself with the IFX Manager as an interface that provides function
call support.

17. Inthe FunctionCall class constructor, register the function call with the IFX Manager using the
method register I nterface.

= Inthefollowing example the FciFunctionCall constructor uses the register | nter face method
to register itself with the IFX Manager as a FunctionCall object:

public Fci FunctionCall (1 FX | FXMan) throws UW Exception

{
Functi onCal | Manager theFCM

if ((theFCM = | FSSi ngl et on. get Functi onCal | Manager ()) == null)
t hrow new UW Excepti on("Needed Function Call Manager");

| FXMVan. regi sterlinterface(this,
FunctionCal | . FUNCTI ONCALL_| NTERFACE_NAME,
Funct i onCal | . FUNCTI ONCALL_CURRENT_VERSI ON,
FunctionCal | . FUNCTI ONCALL_M N_VERSI ON_SUPPORTED,
0x01000300, O, null, theFCM get Defaul tListener());

Note: For detailed information about the register| nterface method, including a description of its
parameters, refer to “ registerinterface” on page 203.

Setting up the FunctionCall Class | 175

Registering your packages of custom functions with the Function Call
Manager

18. Usethe FunctionCallManager method register FunctionCall in the function call constructor to
register each of your custom functions and corresponding package(s) with the Function Call
Manager.

= TheFCI alowsyou to assign a version number to each function that you create. This allows
you to provide upgrades to single functionsin |FX extensions you have aready distributed to
users. For more information see the next section.

= When registering your package(s) of functions with the Function Call Manager, be aware of
the ICS API package naming conventions. For more information see the next section.

= You must register each of your custom functions separately. So, if you are registering three
functions with the Function Call Manager, you must call register FunctionCall three times.

= Inthefollowing example, the FciFunctionCall constructor uses the register FunctionCall
method to register the conver tDate function with the Function Call Manager:

public Fci FunctionCall (1 FX | FXMan) throws UW Exception

{
Functi onCal | Manager theFCM

if ((theFCM = | FSSi ngl et on. get Functi onCal | Manager ()) == null)
t hrow new UW Excepti on("Needed Function Call Manager");

| FXMVan. regi sterlinterface(this,
Funct i onCal | . FUNCTI ONCALL_| NTERFACE_NAME,
Funct i onCal | . FUNCTI ONCALL_CURRENT_VERSI ON,
FunctionCal | . FUNCTI ONCALL_M N_VERSI ON_SUPPORTED,
0x01000300, O, null, theFCM get Defaul tListener());

t heFCM r egi st er FunctionCal | (this, "sanpl e_package",
"convertDate", Fci FunctionCall.CONVERTDATE,
FunctionCal | . FCl _FOLLOANS_STRI CT_CALLI NG_PARAMETERS,
"S,S", 0x01000300, "Converts a date to a different
| ocal e");

Note: For detailed information about the register FunctionCall method, including a description of
its parameters, refer to “ register FunctionCall” on page 212.

About Function Version Numbers

Along with registering your package(s) of custom functions with the Function Call Manager, the
register FunctionCall method is also used to specify a version number for each function that you
create. In the previous example, the ConvertDate function is registered with the version number
0x01000300.

Assigning a version number to each function allows you to provide upgrades to single functionsin
extensions you have already distributed to users.

176 |

Setting up the FunctionCall Class

For example, if you distributed an extension containing a package of 50 functions for your application
and then wanted to change the behavior of one of the functions, you could:

= Writeanew extension containing just the upgraded function.

= Register the new function using register FunctionCall, with the same package name and function
name as the original function but with a higher version number.

= Distribute the new extension to users.

When the ICS AP initializes all of the IFX extensions it would find two functions with the same
package name and function name. It would deregister the one with the lower version number thereby
updating your application.

Note: For moreinformation about using version numbers, refer to “ Defining a Version Number” on
page 213.

Package Naming Conventions

The main purpose of package names is to distinguish the functions in a package from those in other
packages that could potentially have the same names. All packages you create must contain an
underscore in their names. For example, the convertDate function belongs to a package called
sample_package.

= Choose aname that aptly describes the set of functions you are creating and is distinct enough to be
unique within its realm of usage.

= The package nameis an internal logical element of the ICS API.
= Package names are case sensitive.

= All package names you define must contain an underscore.

Note: A group of functionsis provided with the Forms System software as the system package. The
system package is reserved for system functions that are defined in the XFDL Specification. You may
not add to the system package or call your packages by the name system.

Implementing your custom functions

19. Implement your custom functions as part of the FunctionCall method evaluate.

= TheFunctionCall class must implement the evaluate method since it is defined as part of the
FunctionCall interface.

= evaluateiscalled whenever a particular function needs to be executed.

= Inthefollowing example, the convertDate function isimplemented as part of evaluatein the
FunctionCall class FciFunctionCall.

public class Fci FunctionCall extends FunctionCalllnpl Base inpl enents
Functi onCal |

{
/* Additional Code Renoved */

public void eval uate(String thePackageNane,

Setting up the FunctionCall Class | 177

String theFuncti onNane, int theFunctionl D,
i nt theFunctionl nstance, short theComand,
com Pur eEdge. xf dl . For mMNodeP t heForm
com Pur eEdge. xf dl . For MNodeP t heConput eNode,
com Pur eEdge. | FSUser Dat aHol der t heFuncti onDat a,
com Pur eEdge. | FSUser Dat aHol der t heFuncti onl nst anceDat a,
com Pur eEdge. xf dl . FormMNodeP [] theArgLi st,
com Pur eEdge. xf dl . For mMNodeP t heResult) throws UW Exception
{
String theDateString;
String thelLocal eString;
String theAnswerString = null;
Date theDate = nul | ;
Local e theLocal €;
Dat eFor nmat t heDat eFor nat ;

i f (theCommand == FunctionCal | . FCl COVWAND_RUN) {

/* Now we' |l switch on the function ID. This makes it easy for a
singl e FunctionCall object to support nultiple functions. */

i f (theFunctionlD == Fci Functi onCal | . CONVERTDATE)

/[* First, we’'ll grab the string values of the two arguments.
Since we indicated that this method has two paraneters and
that it nust have two paraneters
(FCl _FOLLOAS_STRI CT_CALLI NG_PARAMETERS) when we regi stered
it, we don't have to check to see if we actually received
both paraneters, since this code won't even be called unless
the caller used the right nunmber of paraneters. */

theDateString = theArgList[0].getLiteral Ex(null);
theLocal eString = theArgList[1].getLiteral Ex(null);

/* Now we performthe conversion. */

if (theLocaleString.length() !=5)
theAnswer String = "Local e nust be 2 characters, " +
"a space and 2 characters”;
el se
{
theLocal e = new Local e(theLocal eString. substring(0, 2),
t heLocal eString. substring(3));

if ((theDateFormat = Dat eFormat. get Dat el nst ance(

Dat eFormat . LONG, thelLocale)) == null)
theAnswer String = "Unrecogni zed | ocal e";
el se
{
try
{

if ((theDate = new Si npl eDat eFor nat
("yyyyMwdd") . parse(theDateString)) == null)
theAnswer String = "Unable to parse";

178 | Setting up the FunctionCall Class

}
catch (ParseException ex)
{
theAnswer String = ex.toString();
}

if (theAnswerString == null)
t heAnswer String = theDat eFormat. format (theDate);

}

/* Lastly, we'll store the result in the result node */

theResul t.setLiteral Ex(null, theAnswerString);

}

/* Additional Code Renobved */

Note:

For detailed information about the evaluate method, including a description of its

parameters, refer to “ evaluate” on page 192.

Providing help information for each of your functions

By using the method help, you can provide help information to form designers within a development
environment (for example, ICS Designer). Use help to help form designers choose and use the correct
functions.

20. Provide in-depth help information for each of the functions you create by implementing the
FunctionCall method help.

The FunctionCall class must implement the help method since it is defined as part of the
FunctionCall interface.

In the following example, help provides help information for the convertDate function in the
class FciFunctionCall.

public class FciFunctionCall extends
com Pur eEdge. xfdl . Functi onCal | | npl Base i npl enents Functi onCal |

{
/* Additional Code Renobved */

public void hel p(String thePackageNane,
String theFuncti onNane, int theFunctionl D,
com Pur eEdge. | FSUser Dat aHol der t heFuncti onDat a,
com Pur eEdge. St ri ngHol der t heQui ckDesc,
com Pur eEdge. St ri ngHol der theFuncti onDesc,
com Pur eEdge. St ri ngHol der t heSanpl eCode,
com Pur eEdge. Stri ngArrayHol der theArgsNaneLi st,
com Pur eEdge. Stri ngArrayHol der theArgsDesclLi st,
com Pur eEdge. Short ArrayHol der theArgsFl agli st,

Building the IFX Extension | 179

com Pur eEdge. St ri ngHol der t heRet Val Desc,
com Pur eEdge. Short Hol der t heRet Val Fl ag) t hrows

UW Excepti on
{
swi t ch(t heFuncti onl D)
{
case Fci FunctionCal | . CONVERTDATE:

t heQui ckDesc. val ue = "Converts a date to a different " +
"l ocal e";

t heFuncti onDesc. value = "This function takes a date in " +
"the first paraneter and a locale in the second " +
"paraneter and returns the date formatted for the " +
"specified | ocal e";

t heSanpl eCode. val ue = "\t <LABEL SID = \"LABEL1\"> \n" +
"\t\t <VALUE COWUTE = "sanpl e_package. convert " +
"(\'19980101\', \’'french\’)"></VALUE> \n" +
"\t\t <SIZE CONTENT = \"ARRAY\ "> \n" +
"\t\t\t <AE>10</AE> \n" +
"\t\t\t <AE>1</AE> \n" +
"\t\t </SIZE> \n" +
"\t </LABEL> \n";

t heAr gsNaneLi st.val ue = new String[2];

t heAr gsNaneLi st. val ue[0] = "theDate";

t heAr gsNaneLi st. val ue[1] = "thelLocal e";

t heAr gsDesclLi st.value = new String[2];

t heAr gsDesclLi st.val ue[0] = "The english date";

t heAr gsDesclLi st.val ue[1] = "The | ocal e";

t heRet Val Desc. val ue = "The formatted date";

br eak;

}
}

Note: For detailed information about the help method, including a description of its parameters,
refer to “ help” on page 196.

Building the IFX Extension

Once you have generated the Java source files for your Extension class, you must compile the source
code to create the IFX extension.

= UseaJavacompiler that is supported by this API to compile your Extension class files. Refer to
the ICSAPI Installation and Setup Guide for more information on compatible devel opment
environments.

180 |

Testing and Distributing IFX Extensions

Before building your |FX extension you should have a collection of .javafiles that represent your
extension. After compiling the .javafiles you will have a set of files with the same name asthe
Javafiles but with the extension .class.

Java——| cOMPILER |—class

java——| forJAVA |, class

For example, after compiling the source code for the Extension class FCIExtension.java and the
FunctionCall class FciFunctionCall.java your Java compiler will create two corresponding files:
FCIExtension.class and FciFunctionCall.class. These two class files make up the IFX extension
called FCIExtension.

The details of compiling your source code are not included in this manual. Consult your Java
documentation for specific information on how to use your Java compiler.

Note: If you are compiling extensions under the Sun VM but want themto run in the Microsoft VM,

you must include the following flag in your javac command: -target 1.1

Testing and Distributing IFX Extensions

Once you have created your |FX extensions you can package them for testing or distribution by using
either of the following methods:

Package the .classfilesinto asingle Java Archive (JAR) file and distribute the JAR file. Refer to
“Distributing IFX Extensions for Testing or Use” on page 181 for more details.

Package the .classfiles into a single Java Archive (JAR) file and embed the JAR file directly into
your XFDL forms. Refer to “Embedding IFX Extensionsin XFDL Forms’ on page 182 for more
details.

Packaging IFX Extensions as JAR Files

Once you have created your IFX extensions you can package the .classfilesinto asingle Java Archive
(JAR) file and distribute the file. This means that you can package multiple extensions into one JAR
file for distribution.

Before building the JAR file, you must create amanifest that indicates which classesin the JAR file are
IFX extensions.

21. Using your favorite text-editor, create a manifest file for the IFX extensions you wish to packagein

the JARfile.

= The manifest file has the file extension .mf. For example, the manifest file for FCIExtension
iscalled:

FC . nf

= Thefirst line of the manifest must include the manifest-version number. See the following
example for the correct syntax.

Testing and Distributing IFX Extensions | 181

= The manifest fileis broken down into sections, where each section represents a particular
Extension class and its attribute as an IFX extension.

= Theclasslisted in each section of the manifest fileisthe class that implements the Extension
interface. In the following example FCIExtension.class implements FCI Extension.

= For example, the manifest file for FCl Extension will have the following syntax and format
(notice that there is a space after every colon)

Mani fest-Version: 1.0
Name: coni your conpany/ sanpl es/ FCl Ext ensi on. cl ass
| FS- Ext ensi on: True
22. Create aJAR file from the .class files that make up your IFX extension.
s Usethefollowing syntax to create the JAR file:
jar —cvfmdestination.jar manifest.nf YourExtension.class

Your FunctionCal | . cl ass

= Optionally, you can replace the class names with the root folder for your package. Thiswill
include all classesthat are defined in that package. For example, to create a JAR file called
FormlFX for FCIExtension, you would type the following:

jar —cvfm Form FX.jar FCl.nf com

Distributing IFX Extensions for Testing or Use
Once you have packaged your IFX Extension, you can install it for testing or distribute it for general
use. In either case, you place the IFX Extension in the same location.
To distribute your IFX extensions so that they may be used by a specific ICS product:
23. Copy the JAR file to the Extensions folder of the ICS product that will use the IFX extension.

= For example, in order for the convertDate function to work in the Viewer, you would copy the
file FormlFX_jar to the following folder:

Vi ewer program f ol der\ Ext ensi ons

To distribute your IFX extensions so that they may be used by all ICS products:
24. Copy the JAR file to the Forms System Global Extensions folder.

= For example, in order for the convertDate function to work in the Viewer, you would copy the
file FormlFX.jar to the following folder:

C.\ <W ndows Syst en®\ Pur eEdge\ ext ensi ons

Note: For more information about creating Java Archive files and manifest files refer to your Java
documentation.

182 |

Testing and Distributing IFX Extensions

Embedding IFX Extensions in XFDL Forms

You can embed an IFX extension in any XFDL form. The extension will runin ICS Viewer, but will not
be processed by ICS API. This means that server-side applications will not run an embedded | FX.

To embed an IFX extension in aform:
1. Create aJAR filethat contains your IFX extensions.
2. UselICS Designer to enclose the JAR filein aform.

Note: For more information about embedding |FX extensionsin XFDL forms using Designer refer
to the Designer Help.

About MIME Types

JAR files that are enclosed in forms must have the MIME type set to:
» gpplication/uwi_jar
The corresponding XFDL code will look like this:

<m et ype>
application/uw -jar
</ m netype>

If you are using the ICS Designer to enclose aJAR file into aform the Designer will set the MIME type
for you.

Itispossible to override the default java virtual machine for an enclosed JAR file. Thiswill require that
you modify the MIME typein your XFDL file with atext editor. For example, to specify the Microsoft
Javavirtual machine, edit your code to look like this:
<m et ype>
application/uw -jar; vmE"Mcrosoft VM
</ m netype>

Remember that XFDL code is case sensitive. Therefore, be sure that “vm="isin lower case.

Location of Installed IFX Extensions (Security Issues)

The location in which an IFX extension isinstalled determines how much accessthe IFX extension has
to the user’s system resources (for example, user’s system files). The following table summarizes the
security features that are set when an IFX extension isinstalled in a particular location.

Location of Installed IFX Extension Security Features

The IFX extension is installed as a JAR or ZIP The IFX extension has full access to the user’s
file in the Extensions folder of the ICS product system resources.
that will use the extension.

The IFX extension is installed as a JAR or ZIP The IFX extension has full access to the user’s
file in the Forms System Global Extensions system resources.

folder:

C:\<Windows System>\PureEdge\extensions

Summary | 183

Location of Installed IFX Extension Security Features

The IFX extension is installed as a set of .class The IFX extension has full access to the user’s
files in the folder: system resources.
<Windows System>\PureEdge\java\source.

The IFX extension is packaged as a JAR (or Zip) The IFX extension has access only to the one form
file and enclosed directly within a form. that encloses it. The extension cannot access other
parts of the user’s system or cause any damage.

Refer to the following section regarding additional
security restrictions for functions enclosed in XFDL
forms.

Additional Security Restrictions for Functions Enclosed in XFDL
Forms

Note that the following methods are not available to IFX extensions that are enclosed within an XFDL

form:

= com.PureEdge.xfdl. XFDL .readForm

= com.PureEdge.xfdl.FormNodePwriteForm

= com.PureEdge.xfdl.FormNodeP.encloseFile

= com.PureEdge.xfdl.FormNodeP.extractFile

= com.PureEdge.ifx.IFX.ifxScanForExtensions

In addition IFX extensionsthat are enclosed within aform cannot execute the following functions on a
local computer:

» Create classloaders.

= Exit the Javavirtual machine.
= EXxecute a program.

= LinktoaDLL.

= Readfiles.
s Writefiles.
s Deéetefiles.
n Print.
Summary

By working through this section you have successfully built an IFX extension for date conversion. In
the process you have learned how to set up, compile, test, and distribute IFX extensions. You also
learned how to use the following FCI methods:

= getFunctionCallManager
= registerinterface

184 | Summary

= registerFunctionCall
= evduate

u help

The Convert Date sample application is included with this API. you will find it in the folder <API
Program Folder>\samples\java\fci\demo\convert_date.

In order to view the forms provided with this sample application, you must have alicensed or evaluation
copy of the ICS Viewer installed. To download an evaluation copy of the Viewer, refer to the PureEdge
web site at: www.PureEdge.com.

FCI Library Quick Reference Guide | 185

FCI Library Quick Reference Guide

The following sections provide a quick reference guide to the classes, constants, and methods used in
the FCI Library:

= “Holder Objects’” on page 4 describes Holder objects and how to use them.

= “TheExtension Class’ on page 187 describes the extensionl nit method that is used to initialize an
extension and provide services for function calls.

= “TheFunctionCall Class’ on page 189 describes the FunctionCall class and lists the methods
associated with the class.

s “ThelFX Class’ on page 199 lists the methods that handle the management of IFX extensions.

= “The FunctionCallManager Class’ on page 205 lists the methods that handle the management of
functions.

Note: While certain methodsin the FCI library require an IFSUserDataHolder as a parameter, you
will not need to manipulate this object.

About the Method Descriptions

The methods in this reference guide are listed according to the class that they belong to and are
described using the following format:

= Description: A description of what the method does.

= Method: Liststhe method’s signature and type of value returned (if any).
= Parameters: An explanation of the parametersto usein the call.

= Returns: Indicates what valueis returned by the method.

= Notes: Additional information to help you use the method.

= Example: A sample piece of code that uses the method in question.

186 | About the Method Descriptions

The Extension Class | 187

The Extension Class

The Extension class contains the method extensionl nit which is used to initialize an extension and
provide services for function calls. When the Forms System isinitialized, the ICS API checks for
existing extensions and calls extensionl nit for each extension.

You must create an Extension class for every extension that you create. Furthermore, the Extension
class must implement the method extensionl nit sinceit is defined as part of the Extension interface.

The Extension class extends the pre-defined superclass com.PureEdge.ifx.ExtensionlmplBase and
implements the pre-defined interface Extension. It isa good ideafor your Extension class to extend the
super class com.PureEdge.ifx.ExtensionlmplBase since the superclass takes care of many housekeeping
methods that must be implemented.

The Extension class must implement the method extensionl nit since it is defined as part of the
Extension interface. Refer to the extensionl nit method on page page 188 for more information.

Imports

You must import the following files as part of the Extension class source code:
= com.PureEdge.ifx.Extension

= com.PureEdge.ifx.IFX

= com.PureEdge.error.UWIEXception

Example

For an example of how to set up this class and the FunctionCall class, see“ Getting Started with the FCI
Library” on page 169.

188 | extensionlnit com.PureEdge.ifx.Extension

extensionlnit

Description

This method is responsible for the registration of al the services that the extension provides.

Method
public void extensionl nit(
com.PureEdge.ifx.IFX thel FX
) throws UWI Exception;
Parameters
Expression Type Description
thelFX IFX The IFX Manager.
Returns
Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.
Notes
Use the extensionl nit method to create a new FunctionCall object that contains your custom-built
functions.
Remember that in order to create anew FunctionCall object you must define a FunctionCall class that
contains your custom functions. Refer to “ The FunctionCall Class’ on page 189 for more details.
Example

In the following example, extensionl nit creates a FunctionCall object called SimpleFunctionCall.

i nport com PureEdge.ifx.|FX;

i nport com Pur eEdge. i f x. Ext ensi onl npl Base;

i mport com Pur eEdge. i f x. Ext ensi on;

i mport com Pur eEdge. xfdl . Functi onCal I ;

i mport com Pur eEdge. error. UN Excepti on;

public class Sinpl eExtension extends Extensionlnpl Base inpl ements

Ext ensi on
{
public void extensionlnit(lFX thel FX) throws UW Exception
{
FunctionCal |l theFunctionCbject = new Sinpl eFunctionCall (thel FX);
}

The FunctionCall Class | 189

The FunctionCall Class

The FunctionCall class contains definitions for your custom functions. It also registers each
FunctionCall abject, and custom function that the object supports with the Forms System.

The FunctionCall class extends the pre-defined superclass com.PureEdge.xfdl.FunctionCalllmplBase
and implements the pre-defined interface FunctionCall.

The FunctionCall class must implement the methods evaluate and help since they are defined as part of
the FunctionCall interface.

= Remember that in order to make your functions available to the ICS APl you must register your
FunctionCall object with the IFX Manager using the method called register I nterface.

= You must aso retrieve the Function Call Manager from the IFX Manager using the method
getFunctionCallManager and register each of your functions with the Function Call Manager
using the method register FunctionCall.

= For moreinformation about the FunctionCallManager methods refer to “ The FunctionCallManager
Class’ on page 205. For more information about the IFX methods mentioned above, refer to “The
IFX Class’ on page 199.

Imports

You must import the following files as part of the function call source code:
= com.PureEdge.ifx.Extension

= com.PureEdge.xfdl.FormNodeP

= com.PureEdge.xfdl.FunctionCallManager

= com.PureEdge.xfdl.FunctionCall

= com.PureEdge.error.UWIException

= com.PureEdge.lFSUserData

= com.PureEdge.StringHolder

= com.PureEdge.StringArrayHolder

= com.PureEdge.ShortHolder

Example

For an example of how to set up this class and the Extension class, refer to “ Getting Started with the
FCI Library” on page 1609.

190 |

FunctionCall Class Constants

FunctionCall Class Constants

The following table lists the constants that are used within the FunctionCall class along with a short

description of each constant:

Named Constants

Description

FunctionCall.FCI_FOLLOWS _
STRICT_CALLING_
PARAMETERS

Used in the method registerFunctionCall as a possible value for the
parameter theFlags.

Indicates that the user of your custom function must provide the
parameters you define in the registerFunctionCall parameter
theCallingParams.

FunctionCall.FCI_WANTS _
INSTANCE_DEREGISTER_
CALL

Used in the method registerFunctionCall as a possible value for the
parameter theFlags.

Indicates that the Forms System should call evaluate with
theCommand set to FCICOMMAND_ INSTANCEDEREGISTER
when an instance of the function is deregistered.

FunctionCall.FCI_WANTS _
INSTANCE_REGISTER_CALL

Used in the method registerFunctionCall as a possible value for the
parameter theFlags.

Indicates that the Forms System should call evaluate with
theCommand set to FCICOMMAND _INSTANCEREGISTER when
an instance of the function is registered.

FunctionCall.FCI_WANTS _
REGISTER_CALL

Used in the method registerFunctionCall as a possible value for the
parameter theFlags.

Indicates that the Forms System should call evaluate with
theCommand set to FCICOMMAND_REGISTER when the function
is registered.

FunctionCall. FCIARGFLAG _
OPTIONAL

Used as a possible value for the flag theArgsFlagList in the method
help. This value represents an optional parameter.

FunctionCall. FCIARGFLAG _
OPTIONAL

Used as a possible value for the flag theRetValFlag in the method
help. This value represents a return value that is optional.

FunctionCall.FCIARGFLAG _
REPEATING

Used as a possible value for the flag theArgsFlagList in the method
help. This value represents a repeating parameter.

FunctionCall. FCIARGFLAG _
STRING

Used as a possible value for the flag theArgsFlagList in the method
help. This value represents a parameter of type String.

FunctionCall.FCIARGFLAG _
STRING

Used as a possible value for the flag theRetValFlag in the method
help. This value represents a return value of type String.

FunctionCall. FCICOMMAND _
DEREGISTER

Used in the method evaluate as a possible value for the parameter
theCommand.

This constant indicates that evaluate should execute some
procedure when the function has been deregistered.

FunctionCall Class Constants | 191

Named Constants Description
FunctionCall.FCICOMMAND_ Used in the method evaluate as a possible value for the parameter
INSTANCEDEREGISTER theCommand.

This constant indicates that evaluate should execute some
procedure when an instance of the function has been deregistered.

FunctionCall.FCICOMMAND_ Used in the method evaluate as a possible value for the parameter
INSTANCEREGISTER theCommand.

This constant indicates that evaluate should execute some
procedure when an instance of the function is registered.

FunctionCall.FCICOMMAND_ Used in the method evaluate as a possible value for the parameter
REGISTER theCommand.

This constant indicates that evaluate should execute some
procedure when the function is registered.

FunctionCall.FCICOMMAND_ Used in the method evaluate as a possible value for the parameter
RUN theCommand.

This constant indicates that evaluate should evaluate a given
function.

FunctionCall.FUNCTIONCALL__ Current version of the Function Call Interface.
CURRENT_VERSION
Used in the methods registerinterface as a value for the parameter
thelnterfaceVersion.

FunctionCall. FUNCTIONCALL_ Name of the Function Call Interface.

INTERFACE_NAME
Used in the methods registerinterface as a value for the parameter
thelnterfaceName

FunctionCall. FUNCTIONCALL_ The minimum version of the Function Call Interface that is supported.
MIN_VERSION_SUPPORTED
Used in the methods registerinterface as a value for the parameter
theMinInterfaceVersion.

192 | evaluate com.PureEdge.xfdl.FunctionCall

evaluate

Description

This method performs the necessary work for your custom-built function. You will have to insert the
details of your custom functions within this method.

Method
public void evaluate(
Sring thePackageName,
Sring theFunctionName,
int theFunctionI D,
int theFunctionl nstance,
short theCommand,
com.PureEdge.xfdl.FormNodeP theForm,
com.PureEdge.xfdl.FormNodeP theComputeNode,
com.PureEdge.l FSUser DataHolder theFunctionData,
com.PureEdge.l FSUser DataHolder theFunctionlnstanceData,
com.PureEdgexfdl.FormNodeP[] theArgList,
com.PureEdge.xfdl.For mNodeP theResult
) throws UWI Exception;
Parameters
Expression Type Description
thePackageName String The name of the package that contains the function.
theFunctionName String The name of the function.
theFunctionID int A unique number that can be used to identify the
function.
theFunctionlnstance int A unique number that differentiates one instance of

the function from another instance. See Notes for
more information.

theCommand short The name of the command for this method to
perform. See Notes for more information. Other
commands can be found within the manual.

theForm FormNodeP The form that contains the function.

theComputeNode FormNodeP The node within the form that stores the function.
See Notes for more information.

com.PureEdge.xfdl.FunctionCall

Returns

Notes

evaluate | 193

Expression

Type

Description

theFunctionData

IFSUserDataHolder

Reserved. Although this expression is not used, it
must be present.

TheFunctionlnstanc
eData

IFSUserDataHolder

Reserved. Although this expression is not used, it
must be present.

theArgList FormNodeP [] The list of arguments. See Notes for more
information.

theResult FormNodeP The FormNodeP object in which you should store
the result. Simply use setLiteralEx on this object to
store the result.

Nothing if call is successful or throws a generic exception (UW I Exception) if an error occurs.

= theCommand — the value of theCommand represents the command that evaluate will perform.

e Thevalue of theCommand depends on the value of the parameter called theFlagsin the

method called register FunctionCall.

e Usualy theCommand will be set to FCICOMMAND _RUN. Thisindicates that afunction
must be evaluated.

e Other possible values for theCommand include:

e FCICOMMAND_INSTANCEDEREGISTER — This constant indicates that evaluate
should execute some procedure when an instance of the function has been deregistered.

e FCICOMMAND DEREGISTER — This constant indicates that evaluate should execute
some procedure when the function has been deregistered.

e FCICOMMAND_REGISTER — This constant indicates that evaluate should execute some
procedure when the function is registered.

e FCICOMMAND_INSTANCEREGISTER — This constant indicates that evaluate should
execute some procedure when an instance of the function is registered.

= theFunctionlnstance — is a unique number that differentiates one instance of the function with
another instance. For example, if aform containstwo calls to the function testPackage.multiply
then two unique values for theFunctionlnstance variable will exist.

= theComputeNode — is the node within the form that contains the function. For example, if you
have an item such as:

<LABEL SID = "L1">

<VALUE COWPUTE = "testPackage.multiply(’'7,

</ LABEL>

"6’)" ></ VALUE>

Then theComputeNode will point to the node that represents the value option.

194 |

evaluate

com.PureEdge.xfdl.FunctionCall

theFunctionlnstanceData — is data specific to an instance of afunction. It will always be returned
when the instance of the function is called. This object is only provided when the
FCI_WANTS INSTANCE_DATA flag is provided during the register FunctionCall call.

theArgList — Each argument’s value is stored as a literal within a FormNodeP object. For
example, to get the value of the first argument, type the following:

theArgList[0].getLiteral Ex(null)

Note: To get the number of argumentsin theArgList use: theArgList.length

Example

public class Fci FunctionCall extends
com Pur eEdge. xfdl . Functi onCal | | npl Base i npl ements Functi onCal |

{
public static final int FUNCTION ID = 1;

/* Additional Code Renoved */

public void eval uate(String thePackageNane,
String theFuncti onNane, int theFunctionl D,
int theFunctionlnstance, short theComrand,
com Pur eEdge. xf dl . For mMNodeP t heForm
com Pur eEdge. xf dl . For mMNodeP t heConput eNode,
com Pur eEdge. | FSUser Dat aHol der t heFuncti onDat a,
com Pur eEdge. | FSUser Dat aHol der t heFuncti onl nst ancebDat a,
com Pur eEdge. xf dl . FormNodeP [] theArglLi st,
com Pur eEdge. xf dl . For mMNodeP t heResult) throws UW Exception

{

[* The first switch in this method is based on theCommand. The only case
that we are interested in handling is FCl COMAND RUN t hat indicates
that we shoul d evaluate a function. */

switch (theComand)

{
case FunctionCal|l.FCl COWAND RUN:

/* The second switch is based on theFunctionlD that you set for each of
your custom functions. This nmakes it easy for a single FunctionCall
object to support nultiple functions. */

swi t ch(t heFuncti onl D)

{
case Fci FunctionCall.FUNCTI ON_I D:

/* Insert the Details of your custom function here */
br eak;

}

br eak;

com.PureEdge.xfdl.FunctionCall evaluate | 195

def aul t:
br eak;

}

/* Additional code Renobved */

196 | help

help

Description

com.PureEdge.xfdl.FunctionCall

Provides help information about each of your custom functions in the form development environment
(for example, ICS Designer).

Method

public void help(

Sring thePackageName,

Sring theFunctionName,

int theFunctionID,

com.PureEdge.l FSUser DataHolder theFunctionData,

com.PureEdge.SringHolder theQuickDesc,

com.PureEdge.SringHolder theFunctionDesc,
com.PureEdge.SringHolder theSampleCode,
com.PureEdge.SringArrayHolder theArgsNameList,

com.PureEdge.SringArrayHolder theArgsDescList,
com.PureEdge.ShortArrayHolder theArgsFlagList,
com.PureEdge.SringHolder theRetVal Desc,
com.PureEdge.ShortHolder theRetValFlag

) throws UWI Exception;

Parameters
Expression Type Description
thePackageName String The name of the package that contains the function.
theFunctionName String The name of the function.
theFunctionID int A unigue number that can be used to identify the function.

theFunctionData

IFSUserDataHolder

Reserved. Although this expression is not used, it must
be present.

theQuickDesc

StringHolder

The method sets a short one-line description of what the
function does.

theFunctionDesc

StringHolder

The method will set a longer more detailed description of
the function.

com.PureEdge.xfdl.FunctionCall

Expression Type Description

theSampleCode StringHolder The method will set an example of the XFDL code used
to call your function, including an example of the function
parameters.

theArgsNameList StringArrayHolder The method will set a list of arguments that your function
takes.

theArgsDescList StringArrayHolder The method will set a description of each of the
arguments in the theArgsNamelList.

theArgsFlagList ShortArrayHolder The method will set a list of bit flags representing the type
of each argument that the function takes. See Notes for
more information.

theRetValDesc StringHolder The method will set a description of your custom
function’s return value.

theRetValFlag ShortHolder The method will set a bit flag representing the type of the

return value. See Notes for more information. Simply use
setLiteralEx on this object to store the result.

Returns

Nothing if call is successful or throws a generic exception (UW I Exception) if an error occurs.

Notes

= Refer to the table “ FunctionCall Class Constants’ on page 190 for possible valuesfor:

e theArgsHagList
* theRetValFlag

Example

public void help(String thePackageNane,

String theFuncti onNang,

i nt theFunctionl D,

com Pur eEdge. | FSUser Dat aHol der t heFuncti onDat a,
com Pur eEdge. St ri ngHol der t heQui ckDesc,

com Pur eEdge. St ri ngHol der theFuncti onDesc,

com Pur eEdge. St ri ngHol der t heSanpl eCode,

com Pur eEdge. Stri ngArrayHol der theArgsNaneLi st,
com Pur eEdge. Stri ngArrayHol der theArgsDesclLi st,
com Pur eEdge. Short ArrayHol der theArgsFl agli st,
com Pur eEdge. St ri ngHol der t heRet Val Desc,

com Pur eEdge. Short Hol der t heRet Val Fl ag) t hrows

{

/* Switch on theFunctionlD. This nakes it easy for

UW Exception

a single FunctionCall

object to support multiple functions. */

swi t ch(t heFuncti onl D)
{

help | 197

198 |

help com.PureEdge.xfdl.FunctionCall

/* Renenber that you nust define an I D nunber for each custom function
that you create. In the exanple below the constant MJLTIPLY represents
the identification nunber for the multiply function. */

case Fci FunctionCall.MILTIPLY:

t heQui ckDesc. value = "multiplies tw nunbers together";

t heFuncti onDesc. value = "This function takes two numeric " +
"paraneters and nultiplies the two nunbers together and " +
"returns the result.";

t heSanpl eCode. val ue = "\tlabel 1 = new | abel\n" + "\t{\n" +
"\t\tval ue = testPackage. multiply(\"10\",fiel d2.value);\n" +
"\t\tsize = [\"10\", \"21\"];\n" + "\t}\n"+
"\tfield2 = new field\n"+
"\t{\n" + "\t\tvalue = \"7\";\n" + "\t}\n";

/* Notice that in defining theArgsNaneLi st bel ow, you nust create the |ist
before providing a value for each elenent in the list. */

t heAr gsNaneLi st. val ue = new String[2];
t heAr gsNaneLi st . val ue[0] = "nunber1";
t heAr gsNaneLi st. val ue[1] = "nunber2";

/* Notice that in defining theArgsDescList bel ow, you nust create the |ist
before providing a value for each element in the list. */

t heAr gsDesclLi st.value = new String[2];

t heArgsDescLi st.value[0] = "The first nunber";
t heAr gsDesclLi st.val ue[1] = "The second nunber";
t heRet Val Desc. val ue = "The result";

br eak;

The IFX Class | 199

The IFX Class

The IFX class encapsul ates methods that handle the management of extensions. To create asimple

package of functionsfor calling from within XFDL forms, you need to use the register | nteface method
inthe IFX class.

For information on the FCI methods used to create a simple package, refer to “The
FunctionCallManager Class’ on page 205.

Imports

You must import the following files as part of the IFX class source code;
= com.PureEdge.ifx.IFX

= com.PureEdge.UWIException

Example

For an example of how to use this method, refer to “ Getting Started with the FCI Library” on page 1609.

200 | deregisterinterface com.PureEdge.ifx.IFX

deregisterinterface

Description

Deregisters afunction call object that has been registered with the IFX Manager.

Method

public void deregister I nterface(
com.PureEdge.Genericl nterface thelnterface
) throws UWI Exception;

Parameters
Expression Type Description
thelnterface Genericlnterface The FunctionCall object that you are deregistering with
the IFX Manager. See Notes for more information.
Returns

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

Notes
Generally aFunctionCall object deregistersitself from the IFX Manager. So most times you can use
the keyword this to represent the FunctionCall object to deregister.

Example

In the following example, thel FX representsthe IFX Manager.

public class MyFunctionCall extends
com Pur eEdge. xfdl . Functi onCal | | npl Base i npl enents Functi onCal |

/* Additional Code Renobved */

public void shutdown(lFX thel FX) throws UW Exception
{

}

t hel FX deregi sterlnterface(this);

com.PureEdge.ifx.IFX getinterfacelnstances | 201

getinterfacelnstances

Description

Returns alist of FunctionCall objects that are currently registered with the IFX Manager.

Method

public com.PureEdge.Genericlnterface] | getl nterfacel nstances(
Sring thelnterfaceName,
int thelnterfaceVersion

) throws UWI Exception;

Parameters
Expression Type Description
thelnterfaceName String The name of the interface that you are looking for. In most
cases, a Function Call Interface.
thelnterfaceVersion int The interface version.
Returns

Returns alist of Genericlnterface objects that must be typecast to FunctionCall objects or null if no
matching interfaces are found. Throws a generic exception (UWIException) if an error occurs.

Example

public class nmyFunctionCall extends
com Pur eEdge. xfdl . Functi onCal | | mpl Base
i mpl ements FunctionCal |

{

CGenericlnterface theList[];
/* Additional Code Renoved */

theLi st = thel FX getlnterfacel nstances
(FunctionCal | . FUNCTI ONCALL_I NTERFACE_NANE,
Funct i onCal | . FUNCTI ONCALL_CURRENT_VERSI ON) ;

for(int i =0 ; i < theList.length ; i++)

{
FunctionCal |l theFunctionCall;

theFunctionCall = (FunctionCall)thelList[i];

/* Additional Code Renoved */

202 | getinterfacelnstances com.PureEdge.ifx.IFX

com.PureEdge.ifx.IFX registerinterface | 203

registerinterface

Description

Registers a FunctionCall object with the IFX Manager.

Method

public void register | nterface(
com.PureEdge.Genericl nterface thel nterface,
Sring thelnterfaceName,
int thelnterfaceVersion,
int theMinlnterfaceVersion,
int theFlags,
Sring [] theCriteriaList,
com.PureEdge.ifx.IFXCriteriaM atchingHandler theCriteriaHandler
) throws UWI Exception;

Parameters

Expression Type Description

thelnterface Genericlnterface The object that you are registering with the IFX Manager.
Typical setting: this (if the object is registering itself)

thelnterfaceName String The name of the Interface that you are registering. In this
case a Function Call Interface. Typical setting:
FunctionCall.FUNCTIONCALL_INTERFACE_NAME

thelnterfaceVersion int The function call interface version. Typical setting:
FunctionCall.FUNCTIONCALL_CURRENT_VERSION

theMinInterfaceVersi int The minimum version that the interface will support.

on Typical setting: FunctionCall.FUNCTIONCALL_
MIN_VERSION_SUPPORTED

theFlags int Reserved. Setting: 0

theCriteriaList String [] Reserved. Setting: null

theCriteriaHandler com.PureEdge.ifx.I Reserved. Setting: theFCM.getDefaultListener()
FX Criteria-
Matching Handler

Returns

Nothing if call is successful or throws a generic exception (UW I Exception) if an error occurs.

204 | registerinterface com.PureEdge.ifx.IFX

Notes
= Typicaly, you will have to retrieve the Function Call Manager from the IFX Manager using
getFunctionCallM anager before you call register I nterface.
= Typicaly theregisterInterface parameter called theCriteriaHandler is set to:
t heFCM get Def aul t Li st ener ()
Note that theFCM is aFunctionCallM anager object which represents the Function Call Manager.
Example

In the following example, thel FX represents the IFX Manager

public Fci FunctionCall (1 FX thel FX) throws UW Exception
{

/* Additional code renoved */

thel FX. registerinterface(this,
FunctionCal | . FUNCTI ONCALL_I NTERFACE_NAME,
FunctionCal | . FUNCTI ONCALL_CURRENT_VERSI ON,
FunctionCal | . FUNCTI ONCALL_M N_VERSI ON_SUPPORTED, 0,
nul I, theFCM get DefaultListener());

The FunctionCallManager Class | 205

The FunctionCallManager Class

The FunctionCallManager class encapsul ates methods that handle the management of FunctionCall
objects. To create a simple package of functions for calling from within XFDL forms, you need to use
the following FunctionCallManager methods:

= registerFunctionCall
= evaluateFunctionCall
= getFunctionCallHelp

All of the methods described in this section act on a FunctionCallManager object. Before you can use
any of these methods you must retrieve an | FSSingleton object using the method
getFunctionCallManager. For more information on this method and other IFSSingleton methods refer
to “The IFSSingleton Class’ on page 135.

Imports

You must import the following files as part of the FunctionCallManager class source code:
= com.PureEdge.xfdl.FunctionCallManager

= com.PureEdge.xfdl.FunctionCall

= com.PureEdge.xfdl.FormNodeP

= com.PureEdge.IntHolder

= com.PureEdge.StringHolder

= com.PureEdge.StringArrayHolder

= com.PureEdge.ShortHolder

= com.PureEdge.UWIException

Example

For an example of how to use these methods to create a package of functions, refer to “ Getting Started
with the FCI Library” on page 169.

206 | deregisterFunctionCall com.PureEdge.xfdl.FunctionCallManager

deregisterFunctionCall

Description

Deregisters a particular function from the Function Call Manager.

Method

public void deregister FunctionCall(
com.PureEdge.xfdl.FunctionCall thelnterface,
Sring thePackageName,
Sring theFunctionName
) throws UWI Exception;

Parameters
Expression Type Description
thelnterface FunctionCall The FunctionCall object that contains the function that you
are deregistering with the IFX Manager. See Notes for more
information.
thePackageName String The name of the package that contains the function. See
Notes for more information.
theFunctionName String The name of the function to be deregistered. See Notes for
more information.
Returns

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

Notes
= thelnterface - Generaly aFunctionCall object will deregister itsown functions, in this case use the
keyword thisto represent the FunctionCall object.
= thePackageName — Use the package name that you created when you registered the function using
register FunctionCall.
= theFunctionName - Use the function name that you created when you registered the function using
register FunctionCall.
Example

public Fci FunctionCall (I FX thel FX) throws UW Exception
{

/* Additional code renoved */

com.PureEdge.xfdl.FunctionCallManager deregisterFunctionCall | 207

t heFCM der egi st er Functi onCal | (t hi s, "sanpl e_package", "nmul tiply");

208 |

evaluateFunctionCall

evaluateFunctionCall

Description

com.PureEdge.xfdl.FunctionCallManager

Use this method to call a package function. Since package functions assume that they are called by the
ICS AP, this method establishes any additional parameters that the function may be expecting.
Generally, function callsin a package should not be called directly since there are more parameters that

must be passed.
Method
public void evaluateFunctionCall(
Sring thePackageName,
Sring theFunctionName,
int theFunctionl nstance,
short theCommand,
com.PureEdgexfdl.FormNodeP theForm,
com.PureEdge.xfdl.For mNodeP theComputeNode,
com.PureEdge.xfdl.FormNodeP [] theArgList,
com.PureEdge.xfdl.FormNodeP theResult
) throws UWI Exception;
Parameters
Expression Type Description
thePackageName String The name of the package that contains the function.
theFunctionName String The name of the function.
theFunctionlnstance int A unique number that differentiates one instance of the
function from another instance. See Notes for more
information.
theCommand short The name of the command for this method to perform.
Setting: Typically FCICOMMAND_ RUN. See Notes for more
information. Other commands can be found within the
manual.
theForm FormNodeP The form that contains the function.
theComputeNode FormNodeP The node within the form that contains the function. See
Notes for more information.
theArgList FormNodeP [] The list of arguments. See Notes for more information.

theResult

FormNodeP

The FormNodeP object in which the result will be stored.

com.PureEdge.xfdl.FunctionCallManager evaluateFunctionCall | 209

Returns

Nothing, or throws a generic exception (UWIException) if an error occurs.

Notes
= Usethis method when you are calling another function from within your source code.
= theFunctionlnstance - is a unique number that differentiates one instance of the function with
another instance. For example, if aform contains two calls to the function
sample_package.multiply then two unique values for theFunctionlnstance variable will exist.
= theComputeNode — specifies which node in the form stores the function. For example, if you have
an item such as:
<l abel sid = "LABEL1">
<val ue>sanpl e_package. nul ti ply("7", "6")</val ue>
</ | abel >
Then theComputeNode will point to the node that represents the value option.
Example

In the following example, the function my_package.multiply uses the evaluateFunctionCall method
to call the sample_package.multiply function.

public void eval uate(String thePackageNane,
String theFuncti onNane, int theFunctionlD, int theFunctionlnstance,
short theCommand, com PureEdge. xf dl . For rfNodeP t heForm
com Pur eEdge. xf dl . For mMNodeP t heConput eNode,
com Pur eEdge. | FSUser Dat aHol der t heFuncti onDat a,
com Pur eEdge. | FSUser Dat aHol der t heFuncti onl nst anceDat a,
com Pur eEdge. xf dl . FormNodeP [] theArglLi st,
com Pur eEdge. xf dl . For mMNodeP t heResult) throws UW Exception

switch (theComand)

{
case FunctionCal |l . FCl COUWAND RUN:

swi t ch(t heFuncti onl D)

{
case nyFC. MJULTI PLY:

/* The eval uateFunctionCall nethod is used here to call the
sanpl e_package. mul tiply function. The nmultiply function cal cul ates
the result and stores it in theResult. Note that the Function Call
Manager must be retrieved. */

t heFCM eval uat eFuncti onCal | (" sanpl e_Package", "mul tiply",
t heFuncti onl nst ance, theComand, theForm theConputeNode,
t heAr gLi st, t heResul t);

br eak;

}

br eak;

210 | evaluateFunctionCall com.PureEdge.xfdl.FunctionCallManager

def aul t:
br eak;

com.PureEdge.xfdl.FunctionCallManager getDefaultListener | 211

getDefaultListener

Description

Helps the IFX Manager determine which FunctionCall object implements a specific function.

Method

public com.PureEdge.ifx.| FXCriteriaM atchingHandler getDefaultListener() throws
UWIException

Parameters

There are no parameters for this method.

Returns

An object that can be used to locate the FunctionCall object that contains the specific function. Throws
ageneric exception (UWI Exception) if an error occurs.

Notes

Typically, this method is used when calling the | FX method register I nter face. Refer to the method
description for register I nterface for more information.

212 | registerFunctionCall com.PureEdge.xfdl.FunctionCallManager

registerFunctionCall

Description

Registers your custom function with the Function Call Manager.

Method

public void register FunctionCall(
com.PureEdge.xfdl.FunctionCall theFClInterface,
Sring thePackageName,
Sring theFunctionName,
int theFunctionI D,
int theFlags,
Sring theCallingParams,
int theVersion,
Sring theQuickDesc
) throws UWI Exception;

Parameters

Expression Type Description

theFClinterface FunctionCall The FunctionCall object that will handle requests for the
function. Setting: The FunctionCall object that is registering
the function. See Notes for more information.

thePackageName String The name of the package that will contain the function.

theFunctionName String The name of the function.

TheFunctionID int A unique number that can be used to identify the function. See
Notes for more information.

TheFlags int A set of flags which indicate how the custom function will be
evaluated. Setting: Typically
FCI_FOLLOWS_STRICT_CALLING_PARAMETERS or 0.
See Notes for more information.

theCallingParams String The list of parameters that this function takes. Setting: S, O, or
R. See Notes for more information.

TheVersion int The version number of the function. Setting: Function

Version Number. See Defining a Version Number below for
more information.

theQuickDesc String A short, one-line description of what the function does.

com.PureEdge.xfdl.FunctionCallManager registerFunctionCall | 213

Returns

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

Notes
= theFClinterface — Typically aFunctionCall object will register its own function with the Function
Call Manager. Use the keyword thisto represent the current object.

= theFunctionlD - Each function that you create as part of a particular package must have a unique
identification number. Define each function’s ID number as a constant at the beginning of the
class. For example, the multiply function has an ID number of 1:

public static final intMILTIPLY_ID = 1;
» theFlags— Refer to the table of “FunctionCall Class Constants’ on page 190 for alist of
possible values for theFlags.

= theCallingParams - List the type of each parameter that the function will take and separate each
value with acomma.

e Use Sto indicate a string parameter.
e |f the parameter is optional, then an O is added after the S.
e |If the parameter can repeat, then an R is added after the S.

« For example, if you wereto register afunction that had to have one parameter and optionally a
second parameter then the theCallingParams would look like the following:

'S, SO

Defining a Version Number
= |f multiple FunctionCall objects register the same function for the same package, then the function
with the highest version number is used.

= Version numbers are defined in hexadecimal format as follows, where the 0300 is a constant and
must be present :

= Ox<magjor><minor><0300>
= For example, afunction that is version 2.1 would be represented as
= 0x02010300

= Define afunction's version number in the parameter theVeersion.

Note: For more information about using version numbers refer to page.

Example

public class Fci FunctionCall extends
com Pur eEdge. xfdl . Functi onCal | | npl Base i npl ements Functi onCal |

{
public static final int FUNCTION ID = 1;

214 | registerFunctionCall com.PureEdge.xfdl.FunctionCallManager

/* Additional Code Renobved */

t heFCM regi st er Functi onCal | (t hi s, "sanpl e_package",
"mul tiply", Fci FunctionCal | . FUNCTI ON_I D,
FCl . FCl _FOLLOAS_STRI CT_CALLI NG_PARAMETERS, "S,S", 0x01000300,
"Mul tiplies two nunmbers");

com.PureEdge.xfdl.FunctionCallManager getFunctionCallHelp | 215

getFunctionCallHelp

Description

This method is used by the ICS AP to call the FunctionCall method help.

Method
public void getFunctionCallHelp(
Sring thePackageName,
Sring theFunctionName,
int theFlagsPtr,
com.PureEdge.IntHolder theVersion,
com.PureEdge.SringHolder theQuickDesc,
com.PureEdge.SringHolder theFunctionDesc,
com.PureEdge.SringHolder theSampleCode,
com.PureEdge.SringArrayHolder theArgsNameList,
com.PureEdge.SringArrayHolder theArgsDescList,
com.PureEdge.ShortArrayHolder theArgsFlagList,
com.PureEdge.SringHolder theRetVal Desc,
com.PureEdge.ShortHolder theRetValFlag
) throws UWI Exception;
Parameters
Expression Type Description
thePackageName String The name of the package that contains the function.
theFunctionName String The name of the function.
theFlagsPtr int Returns the flags that were set when the function was

registered with registerFunctionCall.

theVersion IntHolder The version number of the function.

theQuickDesc StringHolder A short, one-line description of what the function does.

theFunctionDesc StringHolder A longer more detailed description of the function.

theSampleCode StringHolder Provides an example of the XFDL code used to call your
function, including an example of the function
parameters.

theArgsNameList StringArrayHolder A list of arguments that your function takes.

216 | getFunctionCallHelp com.PureEdge.xfdl.FunctionCallManager

Expression Type Description

theArgsDescList StringArrayHolder A description of each of the arguments in the
theArgsNamelList.

theArgsFlagList ShortArrayHolder A list of bit flags representing the type of each argument
that the function takes. See Notes for more information.

theRetValDesc StringHolder A description of your custom function’s return value.

theRetValFlag ShortHolder A bit flag representing the type of the return value. See

Notes for more information. Simply use setLiteralEx on
this object to store the result.

Returns

Nothing if call is successful or throws a generic exception (UW 1 Exception) if an error occurs.

Notes
Refer to the table of “FunctionCall Class Constants’ on page 190 for possible values for:
n theArgsHlagList
= theRetVaFlag

Example

In the example below the function my_package.multiply uses the getFunctionCallHelp method to
call the function help that was defined for the sample_package.multiply function.

public void hel p(String thePackageNane,
String theFuncti onNane, int theFunctionl D,
com Pur eEdge. | FSUser Dat aHol der t heFuncti onDat a,
com Pur eEdge. St ri ngHol der theQui ckDesc,
com Pur eEdge. St ri ngHol der theFuncti onDesc,
com Pur eEdge. St ri ngHol der t heSanpl eCode,
com Pur eEdge. St ri ngArrayHol der theArgsNamneLi st,
com Pur eEdge. St ri ngArrayHol der theArgsDescli st,
com Pur eEdge. Short ArrayHol der theArgsFl agli st,
com Pur eEdge. St ri ngHol der t heRet Val Desc,
com Pur eEdge. Short Hol der t heRetVal Fl ag) throws UW Exception

/* Additional Code Renoved */
swi t ch(t heFuncti onl D)
f:ase myFC. MULTI PLY:
I nt Hol der theVersion = new | ntHolder();
t heFCM get Functi onCal | Hel p("sanpl e_package", "multiply",

t heVersi on, theQui ckDesc, theFunctionDesc, theSanpl eCode,
t heAr gsNaneLi st, theArgsDesclList, theArgsFl agli st,

com.PureEdge.xfdl.FunctionCallManager getFunctionCallHelp | 217

t heRet Val Desc, theRet Val Fl ag);

br eak;

218 |

getFunctionCallList

getFunctionCallList

Description

Lists the functions that belong to a particular package.

Method

public Sring [] getFunctionCallList(
Sring thePackageName
) throws UWI Exception;

com.PureEdge.xfdl.FunctionCallManager

Parameters
Expression Type Description
thePackageName String The package name.
Returns
Returns alist of functions in the package or throws a generic exception (UW I Exception) if an error
occurs.
Example

public class FciFunctionCall extends
com Pur eEdge. xfdl . Functi onCal | | npl Base
i mpl ements FunctionCal |

{

/* Additional code renoved */

public Fci FunctionCall (1 FX thel FX) throws UW Exception

{

/* Additional code renoved */

String[] functionList;

functionLi st = theFCM get Functi onCal | Li st ("sanpl e_package");

com.PureEdge.xfdl.FunctionCallManager getFunctionCallPackagelList | 219

getFunctionCallPackageList

Description

Lists the packages that are currently registered with the Function Call Manager.

Method

public Sring [] getFunctionCallPackagel ist() throws UWIException;

Parameters

There are no parameters for this method.

Returns

Returns alist of package names or throws a generic exception (UWIException) if an error occurs.

Example

public class Fci FunctionCall extends
com Pur eEdge. xfdl . Functi onCal | | mpl Base
i mpl ements FunctionCal |

{

/* Additional code renoved */

public Fci FunctionCall (1 FX thel FX) throws UW Exception

{

/* Additional code renoved */

String[] packageli st;

packageLi st = t heFCM get Functi onCal | PackageList();
}

220 | getFunctionCallPackageList com.PureEdge.xfdl.FunctionCallManager

Appendix: JSP Support | 221

Appendix: JSP Support

Java Server Pages (JSP) is a platform independent technology designed to make it easier to add dynamic content to
web pages. A web application server compiles JSP scripts into Java servlets that are executed by the server’s Java
virtual machine. The resulting dynamic content is inserted into the web document that is then displayed in the end
user’s web browser. Because JSP technology integrates with both HTML and XML documents, you can use JSP to
extend the capabilities of XFDL forms.

This section assumes that you are familiar with both JSP and XFDL. The information in this section is not intended to
show you how to write JSP scripts. Rather, its purpose isto explain how to integrate XFDL with JSP. For information
on JSP refer to http://java.sun.com/products/jsp/. For more information on XFDL, refer to the XFDL Specification.

System Requirements

To process JSP pages that contain XFDL, your web server must be running the following software:
= A J2EE compliant web application server such as Tomcat 3.0 or JRun 3.0.
= JavaRuntime Environment (JRE) 1.2 or greater.

= |CSAPI (if youwant to call APl methods from your JSP code. If you require support for streaming, you must
install version 4.5.0 or greater.)

For information on how to install and configure these components, refer to the documentation that is distributed with
these products.

The XFDL document that the web server produces in response to a JSP request isidentical to any other XFDL form.
Asaresult, end users must have ICS Viewer 3.0 or greater installed on their computer, in addition to a compatible
web browser.

Combining JSP and XFDL

Creating a JSP page involves integrating JSP elements with the source code of the original HTML or XML web
document. In the case of XFDL forms, this means adding appropriate JSP elements to the form’s XFDL code using a
text editor. Once complete, the resulting document is a JSP page and should have a .jsp extension.

Note: Once you add JSP code to an XFDL form, you will no longer be able to open the file with ICS Designer.

While the specific content of each JSP page depends on the logic of the application and the design of the form, certain
fixed elements must be present in every JSP page that contains XFDL . The following elements must appear exactly
as shown in every JSP that includes XFDL:

Element Description

<?xml version="1.0"?> This line is the standard XML file identifier. It must appear
as the first line in the JSP page. There can be no blank
lines or spaces ahead of this text.

222 |

Sample JSP Page

Element Description

<% response.setContentType("application/x-xfdl"); %> This line sets the mime type of the http response object.
In this case, it identifies the object as an XFDL document.
As a result, the user’s browser will display the document
using ICS Viewer. With the exception of any optional
comments or whitespace, this line should appear
immediately after the XML file identifier.

Once you have included these standard elements, you can add the rest of your custom JSP code such as directives,
declarations, or scriptlets.

Note: The XFDL portion of the JSP page must not be compressed but it is valid to use the XFDL
<transmitformat> option to specify either ascii or binary compression for the transmission of the page.

Sample JSP Page

The following source code creates a simple JSP page containing an XFDL form. In this example, the JSP scriptlet
obtains the current date and convertsit into a string. The form contains one label item that displays the date value
provided by the JSP scriptlet.

<?xm version="1.0"?> « XML file identifier

<

<l-- Set the content-type so that the webserver uses ICS Viewer to interpret the
XFDL form -->
<% r esponse. set Cont ent Type("appl i cation/x-xfdl"); % <«————— Setsthe mime type

to XFDL

<% String theDateString; %
<%® page i nport="java.util.Date" %
<!-- This is the JSP scriptlet -->
<%

Dat et heDat e = new Dat e();

theDateString = theDate.toString();
%
<l-- The following XFDL code defines the form-->

<XFDL xm ns="http://ww. PureEdge. com XFDL/ 6. 0" <«—— Start of XFDL code

xm ns: xfdl ="http://ww. Pur eEdge. coml XFDL/ 6. 0" >

<gl obal page si d="gl obal ">
<gl obal sid="gl obal ">
<form d>
<seri al nunber >79F255F9- 86E0- 4163- B243- 855EE603DF17
</ seri al nunber >
<version>1. 3. 1</ versi on>
</form d>
<vfd_dat e>12/7/2001</ vf d_dat e>

Sample JSP Application | 223

</ gl obal >
</ gl obal page>
<page si d="PAGE1l" >
<gl obal si d="gl obal "></ gl obal >
<pagei d>
<seri al nunber >05083920- 872C- 4C0A- 8645- 5096D4135D78
</ seri al number >
</ pagei d>
<vfd_pagesi ze>l etter </ vfd_pagesi ze>
<vf d_pagedpi >120</ vf d_pagedpi >
<vfd_printsize>5;5</vfd_printsize>
<l abel >PAGEL</ | abel >
<vfd_customsi ze>5; 5; | nches</vfd_cust onsi ze>
<l abel si d="DATE_LABEL1">
<val ue> <% theDateStri ng% </val ue>

</ | abel >
</ page> \ JSP expression

</ XFDL>

Sample JSP Application

The API includes a sample web application demonstrating how to use JSP pages to extend the functionality of XFDL
forms. This simple application consists of three files, located in the folder <API Program
Folder>\samples\javaljsp\demo. The following table describes the functions of each file:

File Description

jspget.jsp This JSP page is an example of a standard HTTP GET operation. The first JSP
scriptlet obtains the current date and calculates the number of days until Christmas.
The XFDL form specifies two labels to display this information. The second scriptlet
creates the URL that the form’s submit button uses to call jsppostt2.jsp. Within the
XFDL portion of the page, a JSP include directive obtains a label item from getlabel.txt.

getlabel.txt Although this file does not contain a complete form, it does contain XFDL code
defining a label item. Jspget.jsp accesses this code using an include directive.

jsppost.jsp This page is an example of a standard HTTP POST operation. The scriptlet uses the
API's streaming method readForm to obtain the number of days until Christmas and
the signature from jspget.jsp. It then uses getSignatureVerificationStatus to validate
the signature. Finally, the XFDL portion of the page specifies two labels to display the
results to the end user.

To run this sample JSP application, you need to place the above files into your web server’s JSP folder. For example,
if you are using Tomcat 3.0 you would copy the files to <Tomcat>\webapps\examples\jsp. If you are using JRun 3.0
you would copy the files to <JRun>\servers\default\demo-app\jsp. Refer to your web server’s documentation for
more information.

Note: If you need to deploy or distribute a large web application containing many files, you may prefer to use
WAR files. In this example, a single WAR file would enclose all threefiles.

224 | Sample JSP Application

To run the application, users either follow alink or enter the appropriate URL in their browser’s address box. For
example, if the application is running on a Tomcat web server, the URL would be: http://<server_name>:<port>/
examples/jsp/jspget.jsp. If the application is running on a JRun server, the URL would be: http://
<server_name>:<port>/demoljsp/jspget.jsp.

Index

Symbols

== operator, 4
->symboal, 9

A

about the API, 3
addNamespace method, 40
algorithm, looking up a hash algorithm, 144
AP
about the API, 3
about the Form Library, 15
classesinthe API, 25
difference between Java Edition and C Edition, 3
intializing the API, 19
possible uses for the API, 15
where the API fitsinto your system, 3
applications, setting up your, 17
architecture for FCI extensions, 165
argument nodes, 7, 12
attachments
attaching filesto aform, 52
extracting attachments from a form, 56
removing an attachment, 102
attributes
getting alist of attributes and values, 62
getting the value of an attribute, 60
removing an attribute, 100
setting an attribute, 105
Authenticated Clickwrap
validating Authenticated Clickwrap signatures,

116, 119
B
BooleanHolder, 5
C

CAPI vs. JavaAPI, 3
calling afunction in a package, 208
cells, creating, 42
Certfiicate class
about, 29
certificates
getting alist of available certificates, 64, 155
getting specific certificate data, 30
child nodes, locating, 66
classfiles, creating, 179
classes
Certificate class, 29
classesin the API, 25
classesin the Form Library, 15, 25

Index

DTK class, 15, 35
Extension class, 170, 187
FormNodeP class, 15, 39
FunctionCall class, 171, 189
FunctionCallManager class, 205
Hash class, 131
IFSSingleton class, 135
IFX class, 199
LocalizationManager class, 141
Security Manager class, 143
Signature class, 145
UWIException class, 15
XFDL, 151
XFDL class, 15
closing aform, 49
tutorial, 22
compiling an application
tutorial, 22
compressing aform, 128
compute node property, 7
computes
deactivating the compute system, 103, 160
setting a compute, 107
constants
FCI_FOLLOWS STRICT_CALLING _PARAME
TERS, 190
FCI_WANTS INSTANCE DATA, 194
FCI_WANTS INSTANCE DEREGISTER _CAL
L, 190
FCI_WANTS INSTANCE REGISTER CALL,
190
FCI_WANTS REGISTER_CALL, 190
FCIARGFLAG_OPTIONAL, 190
FCIARGFLAG_REPEATING, 190
FCIARGFLAG_STRING, 190
FCICOMMAND_ DEREGISTER, 190, 193
FCICOMMAND _INSTANCEDEREGISTER,
191, 193
FCICOMMAND _INSTANCEREGISTER, 191,
193
FCICOMMAND_REGISTER, 191, 193
FCICOMMAND_RUN, 191
FunctionCall class, 190
FUNCTIONCALL_CURRENT_VERSION, 191
FUNCTIONCALL_INTERFACE_NAME, 191
FUNCTIONCALL _MIN_VERSION_SUPPORTE
D, 191
UFL_AFTER _SIBLING, 50, 152
UFL_APPEND_CHILD, 50, 152
UFL_BEFORE_SIBLING, 152
UFL_GZIP_COMPRESS, 128

| 225

226 |

Index

UFL_OPTION_REFERENCE, 46
UFL_ORPHAN, 50
UFL_PAGE_REFERENCE, 46
UFL_SAVE ALLOW, 128
UFL_SEARCH, 46
UFL_SEARCH_AND_CREATE, 46
UFL_TRANSMIT_ALLOW, 128
conventions
document conventions, 1
for method descriptions, 27, 185
package naming conventions, 176
copying a node, 50
create method, 152
createCell method, 42
creating
aform or node, 152
creating cellsin aform, 42
current value
about signed computes, 16
custom function, convertDate, 169
custom functions. See functions

D

data model, updating the XML data model, 129
defining, version numbers, 213
deleteSignature method, 44
deleting

aform, 22

deleting aform from memory, 49

deleting a node from memory, 49

removing an enclosure from aform, 102
dereferenceEx method, 46
dereferencing, 9

special notes on, 112
deregisterFunctionCall method, 206
deregistering a function call, 206
deregisterinterface method, 200
destroy method, 22, 49

tutorial, 22
digital certificates, getting a list of available cetificates,
64, 155
digital signatures

determining if signatures are available, 158
distributing

extensions, 180

JAR files, 180
distributing, applications, 22
document conventions, 1
DTK class, 15, 35
duplicate method, 50
duplicating a node, 50

E

encloseFile method, 52
encl osel nstance method, 54
enclosures
enclosing filesin aform, 52
extracting enclosures from aform, 56
removing an enclosure, 102
equals method, 4
error message, setting the language for, 142
evaluate method, 176, 192
evaluateFunctionCall method, 208
evaluating afunction, 192
Extensible Forms Description Language. See XFDL
Extension class, 187
creating extensions, 170
extensionlnit method, 171, 185, 188
extensions
about extensions, 163
about the IFX Manager, 166
building an extension, 179
distributing extensions, 180
embedding extensionsin forms, 182
how FCI extensions work, 165
implementing an extension, 171
installing extensions, 182
intializing extensions, 187
testing, 180
tutorial, 169
extractFile method, 56
extracting enclosures, 56
extractl nstance method, 57

F

FCI Library

about, 163, 164

about functions, packages and extensions, 163

about the extension architecture, 165

how FCI extensions work, 165

how the FCI Library works with the Form Library,

165

quick reference, 185

tutorial, 169
FCI_FOLLOWS STRICT_CALLING PARAMETER
S constant, 190
FCI_WANTS INSTANCE DATA constant, 194
FCI_WANTS INSTANCE DEREGISTER CALL
constant, 190
FCI_WANTS INSTANCE REGISTER CALL
constant, 190
FCI_WANTS REGISTER_CALL constant, 190
FCIARGFLAG_OPTIONAL constant, 190
FCIARGFLAG_REPEATING constant, 190
FCIARGFLAG_STRING constant, 190

FCICOMMAND_DEREGISTER constant, 190, 193
FCICOMMAND_INSTANCEDEREGISTER constant,
191, 193
FCICOMMAND_INSTANCEREGISTER
191, 193
FCICOMMAND_REGISTER constant, 191, 193
FCICOMMAND_RUN constant, 191
Form Library
about, 15
classes, 25
classesin the Form Library, 15
getting started with the Form Library, 17
how the Form Library works with the FCI Library,
165
possible uses for the Form Library, 15
quick reference, 25
form nodes, 7, 12
formNodeP
formNodeP structure, 7
FormNodeP class, 15
about, 39
Destroy, 22
FormNodeP objects
See also nodes
about, 4, 39
comparing FormNodeP objects, 4
creating a FormNodeP object, 152
freeing FormNodeP objects from memory, 4
special notes on formNodeP objects, 71
forms
embedding extensionsin forms, 182
writing aform to disk, 127
formula node property, 7
formulas
about signed formulas, 16
setting aformula, 107
freeing memory, 49
tutorial, 22
Function Call
creating afunction call, 171
current version, 191
minimum version, 191
name of, 191
Function Call Interface. See FCI Library
Function Call Manager
accessing the Function Call Manager, 136
deregistering afunction call, 206
listing the registered packages, 219
registering a function, 212
registering your package, 175
retrieving the manager, 173
FunctionCall class, 189
constants, 190
creating a FunctionCall class, 172

constant,

Index

FunctionCall objects
getting alist of, 201
registering with the IFX Manager, 174

FUNCTIONCALL_CURRENT_VERSION constant,
191
FUNCTIONCALL_INTERFACE_NAME constant,
191

FUNCTIONCALL_MIN_VERSION_SUPPORTED
constant, 191
FunctionCallManager class, 205
FunctionCallManager object, 173
functions
about function version numbers, 175
about functions, 163
calling afunction in a package, 208
deregistering a function, 200
deregistering afunction call, 206
evaluating afunction, 192
implementing your functions, 176
providing help with your functions, 178
registering a function, 203, 212
registering your package with the Function Call
Manager, 175

G

getAttribute method, 60

getAttributel ist method, 62
getCertificateList method, 64
getChildren method, 66

getDataByPath method, 30, 146
getDefaultListener method, 211
getEngineCertificateList method, 155
getFunctionCallHelp method, 215
getFunctionCallList method, 218
getFunctionCallManager method, 136
getFunctionCall PackagelL ist method, 219
getInfoEx method, 68
getlnterfacelnstances method, 201
getLitera ByRefEx method, 70
getLitera Ex method, 73

getL ocalizationM anager method, 137
getL ocalName method, 74
getNamespaceURI method, 76
getNamespaceURIFromPrefix method, 78
getNext method, 80

getNodeType method, 81

getParent method, 82

getPrefix method, 84
getPrefixFromNamespaceURI method, 86
getPrevious method, 88

getRererenceEx method, 89
getSecurityEngineName method, 92
getSecurityManager method, 138
getSigL ockCount method, 94

| 227

228 | Index

getSignature method, 95 IFX Manager
getSignatureV erificationStatus method, 97 about, 166
getting information from aform, tutorial, 20 deregistering a function, 200
getting started getting a list of registered function calls, 201
with the Form Library, 17 registering an object with, 203
getXFDL method, 139 registering the FunctionCall object, 174
global initialize method, 36
item, 12 initializing
page node, 12 IFX extensions, 188
gzip, 128 initializing IFX extensions, 185
initializing the API, 36
H instances, XML
hash algorithm, looking up an algorithm, 144 enclosing an instance, 54
Hash class, 131 extracting an instance, 57
hash method, 132 IntHolder, 5
hashes introduction to this manual, 1
creating a hash, 132 isDigital SignaturesAvail able method, 158
help isXFDL method, 98
providing help for your function calls, 196 item node, 7, 12
providing help with your functions, 178 item, global, 12
help method, 178, 196 J
hierarchy
about the node hierarchy, 7 JAR files
HMAC signatures about MIME types, 182
validating HMAC signatures, 116, 119 distributing extensions as JAR files, 180
holder objects, 4 using JAR files with PureEdge products, 181
BooleanHolder, 5 Java APl vs. CAPI, 3
IFSUserDataHolder, 5 Java Archive Files. See JAR files
IntHolder, 5
ShortArrayHolder, 5 L
ShortHolder, 5 language, setting the default language, 142
StringArrayHolder, 5 literal property
StringHolder, 5 about, 7
StringListHolder, 5 getting the value of, 70, 73

| setting the value, 111
setting the value of the literal property, 109

ICSAPI. See AP loading forms

identifier node property, 7 loading forms into memory, 159

IFSSingleton class, 135 tutorial, 19

IFSUserDataHolder, 5 local names

IFX class, 199 getting the local name of anode, 74

IFX extensions locale, setting the default locale, 142
about, 163 L ocalization Manager, accessing, 137
about the IFX Manager, 166 LocalizationManager class
architecture of, 165 about, 141
building an extension, 179 L ocalizationManager objects, 141
defining your own, 164 locating a node, 46
distributing extensions, 180 lock count, getting for anode, 94
embedding extensionsin forms, 182 lookupHashAIgorithm method, 144
initialization (Extensioninit), 185 lookupl nterface method, 174
initializing, 187 M

installing extensions, 182
location in file system, 165 manifest files, creating, 180

memory, freeing, 22, 49

memory, freeing FormNodeP objects, 4
method descriptions, about, 27, 185
methods

Index

hash, 132

help, 178, 196

initialize, 36

isDigital SignaturesAvailable, 158

addNamespace, 40

create, 152

createCell, 42
deleteSignature, 44
dereferenceEx, 46
deregisterFunctionCall, 206
deregisterinterface, 200
destroy, 22, 49

duplicate, 50

encloseFile, 52

enclosel nstance, 54

equals method, 4

evaluate, 176, 192
evaluateFunctionCall, 208
extensionlnit, 188
extensionlnit method, 171
extractFile, 56
extractinstance, 57
getAttribute, 60
getAttributelList, 62
getCertificateList, 64
getChildren, 66
getDataByPath, 30, 146
getDefaultListener, 211
getEngineCertificateList, 155
getFunctionCallHelp, 215
getFunctionCallList, 218
getFunctionCallManager, 136
getFunctionCallPackagelL ist, 219
getInfoEx, 68

getlnterfacel nstances, 201
getLitera ByRefEXx, 70
getLitera Ex, 73

getL ocalizationManager, 137
getLocalName, 74
getNamespaceURI, 76
getNamespaceURIFromPrefix, 78
getNext, 80

getNodeType, 81

getParent, 82

getPrefix, 84
getPrefixFromNamespaceURI, 86
getPrevious, 88
getReferenceEx, 89
getSecurityEngineName, 92
getSecurityManager, 138
getSigL ockCount, 94
getSignature, 95
getSignatureV erificationStatus, 97
getXFDL, 139

isXFDL, 98
lookupHashAlgorithm functions, 144
lookupl nterface, 174
readForm, 159
registerFunctionCall, 175, 212
registerinterface, 174, 203
remove Enclosure, 102
setAttribute, 105
setDefaultLocale, 142
setFormula, 107
setlitera ByRefEx, 111
setLiteralEx, 109
signForm, 114
validateHM A CWithHashedSecret, 119
validateHM A CWithSecret, 116
verifyAllSignatures, 122
verifySignature, 124
writeForm, 127
xmIModelUpdate, 129

MIME types, about, 182

N

names, getting the security engine name, 92
namespace
adding a namespace to aform, 40
determining if anodeisinthe XFDL namespace, 98
getting the local name of anode, 74
getting the namespace prefix for a namespace URI,
86
getting the namespace prefix for anode, 84
getting the namespace URI for anode, 76
getting the namespace URI from a prefix, 78
null namespace, 10
using namespace in references, 10
node properties
compute property, 7
formula property, 7
identifier property, 7
literal property, 7
table of properties, 13
type, 7
node structure
advanced information, 11
tree structure, 12
nodes
See also attributes
See also local names
See also namespace
about the node hierarchy, 7
adding a child node, 50, 152

| 229

230 |

Index

adding a sibling node, 50, 152

argument, 12

argument nodes, 7

comparing nodes, 4

compute property, 7

creating a new form node, 50

creating form nodes, 152

deleting a node, 49

determining how many times a node has been
signed, 94

duplicating a node, 50

form nodes, 7, 12

forumula property, 7

getting a node’ s properties, 68

getting the literal value, 70

getting the literal value of anode, 73

global page nodes, 12

identifier property, 7

item, 12

item nodes, 7

literal property, 7

locating a child node, 66

locating a node, 46

locating the parent node, 82

node properties, 13

node tree structure, 12

option, 12

option nodes, 7

page, 7

page nodes, 12

reference, getting for a particular node, 89

root nodes, 12

setting the literal value, 111

setting the literal value of anode, 109

table of node properties, 13

traversing nodes, 80, 88

type property, 7

type, determing the node type, 81

O

objects

See also holder objects

accessing LocalizationManager objects, 137

accessing XFDL objects, 135, 136, 139

Certificate objects, 29

determining which object implements a function,
211

Extension objects, 187

FormNodeP objects, 4, 39

FunctionCall objects, 174, 189

FunctionCall objects, creating, 171

FunctionCallManager, 173

getting alist of FunctionCall objects, 201

getting a signature object, 95

Hash objects, 131, 132, 144

holder objects, 4

L ocalizationManager objects, 141

registering an object with the IFX Manager, 203
Security Manager object, 138

Signature objects, 145

XFDL objects, 151

operator, ==, 4
option nodes, 7, 12
output parameters, 4

P

packages

about, 163

calling afunction in a package, 208

defining your own packages, 164

listing the registered packages, 219

package naming conventions, 176

registering your package with the Function Call
Manager, 175

the sample_package, 169

page node, 7, 12

global page node, 12

parameters, output, 4
prefix, namespace See namespace
properties

getting a node’ s properties, 68
table of node properties, 13

putting valuesinto aform, tutorial, 21

Q

quick reference

FClI library, 185
Form Library, 25

R

readForm method, 159
reading

reading forms into memory, 159
reading information from aform, tutorial, 20

references

getting a reference to a particular node, 89
syntax of areference, 8

using namespace in references, 10

using the null namespacein references, 10

registerFunctionCall method, 175, 212
registering

registering a function with the Function Call
Manager, 212

registering an object with the IFX Manager, 203

registering extensions, 188

registering services, 185

registerInterface method, 174, 203

removeEnclosure method, 102
removing
removing a form from memory, 49
removing enclosures, 102
root nodes, 12

S

saving aform to disk, 127
tutorial, 21
saving enclosures to disk, 56
secret, hashing a secret, 132
security
when installing extensions, 182
security engines, getting the name, 92
Security Manager class
about, 143
Security Manager, getting the Security Manager, 138
services, registering, 187
setAttribute method, 105
setDefaultL ocale method, 142
setFormula method, 107
setliteralByRefEx method, 111
setliteral Ex method, 109
setting
setting the value of nodes that are already signed,
109
setting valuesin aform, tutorial, 21
shared secret, hashing a shared secret, 132
ShortArrayHolder, 5
ShortHolder, 5
Signature class
about, 145
signatures
creating signatures, 114
deleting signatures, 44
destroying signatures, 49
determing if asignature isvalid, 97
determining how many times a node has been
signed, 94
getting a signature object, 95
getting specific signature data, 146
setting nodes that are already signed, 109
validating HMAC signatures, 116, 119
verifying, 124
verifying signatures, 122
signForm method, 114
signing
signing aformula, 16
singletons
Security Manager object, 138
specified object node, about, 27
StringArrayHolder, 5
StringHolder, 5
StringListHolder, 5

Index

strings

hashing a string, 132
structures

formNodeP structure, 7
system, where the API fits, 3

T

testing extensions, 180
transmission filters, 128
traversing nodes, 66, 80, 88
traversing child nodes to particular count, 66
tree structure
sample, 12
XFDL, 11
tutorials
closing aform, 22
compiling your application, 22
distributing applications, 22
freeing memory, 22
intializing the API, 19
loading aform, 19
retrieving avalue from aform, 20
setting up your application, 17
setting valuesin aform, 21
writing aform to disk, 21
type
determining the node type, 81
node property, 7

U

UFL_AFTER_SIBLING constant, 50, 152
UFL_APPEND_CHILD constant, 50, 152
UFL_BEFORE_SIBLING constant, 152
UFL_GZIP_COMPRESS constant, 128
UFL_ITEM_REFERENCE constant, 46
UFL_OPTION_REFERENCE constant, 46
UFL_ORPHAN constant, 50
UFL_PAGE_REFERENCE constant, 46
UFL_SAVE_ALLOW constant, 128
UFL_SEARCH constant, 46
UFL_SEARCH_AND_CREATE constant, 46
UFL_TRANSMIT_ALLOW constant, 128
UWIException class, 15

\Y,

vaidateHM A CWithHashedSecret method, 119
vaidateHM ACWithSecret method, 116
validating signatures, 97
verifyAllSignatures method, 122
verifying signatures, 122, 124
verifySignature method, 124
version numbers
about function version numbers, 175, 213

| 231

232 | Index

defining version numbers, 213
example of function version numbers, 213

w

writeForm method, 127
tutorial, 21

writing aform to disk, 127
tutorial, 21

X

XFDL
about, 1

relationto FCI, 1
XFDL class, 15, 151
XFDL object, accessing, 139
XFDL objects, 151

accessing XFDL objects, 135
XFDL tree structure, 11
XML datamodel, updating, 129
XML instances

enclosing an instance, 54

extracting an instance, 57
xmIM odel Update method, 129

	Introduction
	About This Manual
	Who Should Read This Manual
	Document Conventions

	About the ICS API
	Where the ICS API Fits in Your System
	Differences Between the Java and C Editions of the API
	The API Data Types
	FormNodeP Objects
	About Memory Use
	Comparing FormNodeP Objects

	Holder Objects
	Holder Constructors
	Getting and Setting Holder Values
	Holder Types

	About the API Constants

	Overview of the Form Structure
	The Node Structure
	The Node Hierarchy
	References
	Dereferencing
	Namespace in References
	The null Namespace

	Advanced Information about the Node Structure
	A Sample Hierarchy
	The Sample Tree Structure
	itemlocation Node Structure

	Node Properties

	Introduction to the Form Library
	About the Form Library
	How the Form and FCI Libraries Work Together
	The Form Classes
	Using Signatures with the Form Library

	Getting Started with the Form Library
	Setting up Your Application
	1. Create a new Java source file called calculateAge.java.
	2. Any program that calls methods from the ICS API must import the following classes:
	3. Set up the rest of your application. This generally includes defining any classes and methods ...

	Initializing the ICS API
	Loading a Form
	4. Before you can load the form, declare the XFDL object:
	5. Use IFSSingleton.getXFDL to assign the XFDL object to theXFDL. This allows you to access the r...
	6. Call the API method readForm to load the form into memory. The method returns a reference to t...

	Retrieving a Value from a Form
	7. Define the method getBirthDay and a string variable called temp.
	8. Call getLiteralByRefEx to retrieve the literal information contained in the form node PAGE1.BI...
	9. Define the following methods to retrieve the user’s birth month and year from the input form. ...

	Setting Values in a Form
	10. Define the method setBirthDay and an integer variable to reference the user’s day of birth.
	11. Call the method setLiteralByRefEx to assign the user’s day of birth to the form’s hidden day ...
	12. Define the remaining methods to set the user’s birth month and year in the form’s hidden fiel...

	Writing a Form to Disk
	13. Define the method saveForm. This method demonstrates the use of the FormNodeP method writeForm.
	14. Call the Form method writeForm and pass it the new name of the form.

	Closing a Form
	15. The program’s main method calls the API’s destroy method to delete theForm object.

	Compiling Your Application
	Distributing Applications That Use Form Methods
	Summary

	Form Library Quick Reference Guide
	ICS API Classes and Methods
	About the Method Descriptions
	About Specified Object Nodes

	The Certificate Class
	getDataByPath
	Description
	Method
	Parameters
	Notes
	About Data Paths
	Certificate Tags
	Distinguished Name Tags
	Security Engine Tags

	Returns
	Example

	The DTK Class
	initialize
	Description
	Method
	Parameters
	Returns
	Notes
	About Binding Your Applications to the API

	Example

	The FormNodeP Class
	addNamespace
	Description
	Method
	Parameters
	Returns
	Example

	createCell
	Description
	Method
	Parameters
	Returns
	Example

	deleteSignature
	Description
	Method
	Parameters
	Returns
	Example

	dereferenceEx
	Description
	Method
	Parameters
	Returns
	Notes
	FormNodeP
	1. The FormNodeP supplied can never be more than one level in the hierarchy above the starting po...
	2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the...

	Creating a Reference String
	Determining Namespace

	Example

	destroy
	Description
	Method
	Parameters
	Returns
	Notes
	Digital Signatures

	Example

	duplicate
	Description
	Method
	Parameters
	Returns
	Example

	encloseFile
	Description
	Method
	Parameters
	Returns
	Example

	encloseInstance
	Description
	Function
	Parameters
	Returns
	Example

	extractFile
	Description
	Method
	Parameters
	Returns
	Example

	extractInstance
	Description
	Function
	Parameters
	Returns
	Example

	getAttribute
	Description
	Method
	Parameters
	Returns
	Example

	getAttributeList
	Description
	Method
	Parameters
	Returns
	Example

	getCertificateList
	Description
	Method
	Parameters
	Returns
	Example

	getChildren
	Description
	Method
	Parameters
	Returns
	Example

	getInfoEx
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	getLiteralByRefEx
	Description
	Method
	Parameters
	Returns
	Notes
	FormNodeP
	1. The FormNodeP supplied can never be more than one level in the hierarchy above the starting po...
	2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the...
	3. If the FormNodeP is at the argument level, the search will not start from that point. Instead,...

	Creating a Reference String
	Determining Namespace

	Example

	getLiteralEx
	Description
	Method
	Parameters
	Returns
	Example

	getLocalName
	Description
	Method
	Parameters
	Returns
	Example

	getNamespaceURI
	Description
	Method
	Parameters
	Returns
	Example

	getNamespaceURIFromPrefix
	Description
	Method
	Parameters
	Returns
	Example

	getNext
	Description
	Method
	Parameters
	Returns
	Example

	getNodeType
	Description
	Method
	Parameters
	Returns
	Example

	getParent
	Description
	Method
	Parameters
	Returns
	Example

	getPrefix
	Description
	Method
	Parameters
	Returns
	Example

	getPrefixFromNamespaceURI
	Description
	Method
	Parameters
	Returns
	Example

	getPrevious
	Description
	Method
	Parameters
	Returns
	Example

	getReferenceEx
	Description
	Method
	Parameters
	Returns
	Notes
	Creating a Reference String
	Working with Namespace Prefixes
	Working with Unknown Namespaces

	Example

	getSecurityEngineName
	Description
	Method
	Parameters
	Returns
	Example

	getSigLockCount
	Description
	Method
	Parameters
	Returns
	Example

	getSignature
	Description
	Method
	Parameters
	Returns
	Example

	getSignatureVerificationStatus
	Description
	Method
	Parameters
	Returns
	Example

	isXFDL
	Description
	Method
	Parameters
	Returns
	Example

	removeAttribute
	Description
	Method
	Parameters
	Returns
	Example

	removeEnclosure
	Description
	Method
	Parameters
	Returns
	Example

	setActiveForComputationalSystem
	Description
	Method
	Parameters
	Returns
	Example

	setAttribute
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	setFormula
	Description
	Method
	Parameters
	Returns
	Example

	setLiteralEx
	Description
	Method
	Parameters
	Returns
	Notes
	Digital Signatures

	Example

	setLiteralByRefEx
	Description
	Method
	Parameters
	Returns
	Notes
	FormNodeP
	1. The FormNodeP you supply can never be more than one level in the hierarchy above the level at ...
	2. If the FormNodeP is at the same level or lower in the hierarchy than the starting point of the...

	Creating a Reference String
	Digital Signatures
	Determining Namespace

	Example

	signForm
	Description
	Method
	Parameters
	Returns
	Example

	validateHMACWithSecret
	Description
	Method
	Parameters
	Returns
	Example

	validateHMACWithHashedSecret
	Description
	Method
	Parameters
	Returns
	Example

	verifyAllSignatures
	Description
	Method
	Parameters
	Returns
	Example

	verifySignature
	Description
	Method
	Parameters
	Returns
	Example

	writeForm
	Description
	Method
	Parameters
	Returns
	Example

	xmlModelUpdate
	Description
	Function
	Parameters
	Returns
	Example

	The Hash Class
	hash
	Description
	Method
	Parameters
	Returns
	Example

	The IFSSingleton Class
	getFunctionCallManager
	Description
	Method
	Parameters
	Returns
	Example

	getLocalizationManager
	Description
	Method
	Parameters
	Returns
	Example

	getSecurityManager
	Description
	Method
	Parameters
	Returns
	Example

	getXFDL
	Description
	Method
	Parameters
	Returns
	Example

	The LocalizationManager Class
	setDefaultLocale
	Description
	Function
	Parameters
	Returns
	Example

	The SecurityManager Class
	lookupHashAlgorithm
	Description
	Method
	Parameters
	Returns
	Example

	The Signature Class
	getDataByPath
	Description
	Method
	Parameters
	Notes
	About Data Paths
	Signature Tags
	Clickwrap Signature Tags
	Certificate Tags
	Distinguished Name Tags
	HMAC Clickwrap Tags
	Security Engine Tags

	Returns
	Example

	The XFDL Class
	create
	Description
	Method
	Parameters
	Returns
	Example

	getEngineCertificateList
	Description
	Method
	Parameters
	Returns
	Example

	isDigitalSignaturesAvailable
	Description
	Method
	Parameters
	Returns
	Example

	readForm
	Description
	Method
	Parameters
	Returns
	Notes
	Duplicate Scope IDs
	Digital Signatures

	Example

	Introduction to the FCI Library
	About Functions, Packages and Extensions
	About the Function Call Interface (FCI)
	How the Form and FCI Libraries Work Together
	The FCI Extension Architecture

	Getting Started with the FCI Library
	Creating Extensions with the FCI methods
	Setting up the IFX Extension
	Creating the Extension class
	1. Create a new Java source file called FCIExtension.java.
	2. Define the Java package. For example:
	3. Import the following files and any other required files to any Java files that call FCI method...
	4. Create an Extension class that extends the pre-defined super class com.PureEdge.ifx.ExtensionI...

	Implementing the extension initialization method
	5. Implement the extensionInit method as part of the Extension class.

	Creating a new FunctionCall object
	6. Declare a new FunctionCall object before you create it in the extensionInit method.
	7. Create a new FunctionCall object inside the extensionInit method, by calling the FunctionCall ...

	Setting up the FunctionCall Class
	Creating a FunctionCall class
	8. Create a new Java source file called FciFunctionCall.java.
	9. Define the Java package. For example:
	10. Import the following API packages:
	11. Import any other required files. In this case the following files are needed to implement the...
	12. Create a FunctionCall class that extends the pre-defined superclass com.PureEdge.xfdl.Functio...
	13. Define a unique identification number for each custom function that you are going to create u...
	14. Define a FunctionCall class constructor that takes as its parameter the IFX Manager.

	Retrieving the Function Call Manager
	15. Declare the Function Call Manager before requesting it from the IFX Manager.
	16. Use the IFSSingleton method getFunctionCallManager in the function call constructor to reques...

	Registering the FunctionCall object with the IFX Manager
	17. In the FunctionCall class constructor, register the function call with the IFX Manager using ...

	Registering your packages of custom functions with the Function Call Manager
	18. Use the FunctionCallManager method registerFunctionCall in the function call constructor to r...
	About Function Version Numbers
	Package Naming Conventions

	Implementing your custom functions
	19. Implement your custom functions as part of the FunctionCall method evaluate.

	Providing help information for each of your functions
	20. Provide in-depth help information for each of the functions you create by implementing the Fu...

	Building the IFX Extension
	Testing and Distributing IFX Extensions
	Packaging IFX Extensions as JAR Files
	21. Using your favorite text-editor, create a manifest file for the IFX extensions you wish to pa...
	22. Create a JAR file from the .class files that make up your IFX extension.

	Distributing IFX Extensions for Testing or Use
	23. Copy the JAR file to the Extensions folder of the ICS product that will use the IFX extension.
	24. Copy the JAR file to the Forms System Global Extensions folder.

	Embedding IFX Extensions in XFDL Forms
	1. Create a JAR file that contains your IFX extensions.
	2. Use ICS Designer to enclose the JAR file in a form.

	About MIME Types
	Location of Installed IFX Extensions (Security Issues)
	Additional Security Restrictions for Functions Enclosed in XFDL Forms

	Summary

	FCI Library Quick Reference Guide
	About the Method Descriptions

	The Extension Class
	Imports
	Example
	extensionInit
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	The FunctionCall Class
	Imports
	Example
	FunctionCall Class Constants
	evaluate
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	help
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	The IFX Class
	Imports
	Example
	deregisterInterface
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	getInterfaceInstances
	Description
	Method
	Parameters
	Returns
	Example

	registerInterface
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	The FunctionCallManager Class
	Imports
	Example
	deregisterFunctionCall
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	evaluateFunctionCall
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	getDefaultListener
	Description
	Method
	Parameters
	Returns
	Notes

	registerFunctionCall
	Description
	Method
	Parameters
	Returns
	Notes
	Defining a Version Number
	Example

	getFunctionCallHelp
	Description
	Method
	Parameters
	Returns
	Notes
	Example

	getFunctionCallList
	Description
	Method
	Parameters
	Returns
	Example

	getFunctionCallPackageList
	Description
	Method
	Parameters
	Returns
	Example

	Appendix: JSP Support
	System Requirements
	Combining JSP and XFDL
	Sample JSP Page
	Sample JSP Application

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

