
Reusable Embedded IPReusable Embedded IP
Standards and Strategies for Development, Cataloguing, 

and Re-factoring Existing Embedded Technology

www.EmINENTMicro.comwww.EmINENTMicro.com
©Copyright 2004 Eminent Microsystems Inc.



What do we mean by reusable 
“Intellectual Property” (IP)?

Ø A logical, hierarchical organization of software and hardware (fine and 
large grain) components constructed to support rapid engineering of 
standard and embedded computer platform based products in general, 
instrumentation, and consumer device markets. 

Ø Exact same components are directly integrated with and used in design 
simulation tools, design test tools, and products. Software components are 
directly compiled and linked (NOT cut-and-pasted) into multiple products.

Ø Reusability and flexibility are NOT the same thing! 
Envision “Lego blocks”, not a “Swiss army knife”. 

www.EmINENTMicro.comwww.EmINENTMicro.com
©Copyright 2004 Eminent Microsystems Inc.



Technical Principles, Components, 
Properties, Requirements, and 
Standards.

Ø Addresses abstract issues such as reusability principles for architectural 
design, application construction, and component modularization and 
organization. 

Ø Addresses concrete issues such as component implementation 
interfaces, existing libraries, build tools, integration with management tools 
and processes, product application examples.

Ø Complementary to design management strategies and processes

Ø Independent of specific design tools.

Ø Supportive of commonly accepted technology standards 

www.EmINENTMicro.comwww.EmINENTMicro.com
©Copyright 2004 Eminent Microsystems Inc.



Key Principle: Object-oriented Hierarchy

Ø Organize the components in a hierarchy that matches a conceptual 
hierarchy already familiar to engineers

Ø A standard directory hierarchy that is organized according to “is a type 
of” and “is composed of” relationships.

Ø E.g. 
- Layers of abstraction in a computer system
- Algorithms, data structures, protocols

Ø Directory branch naming provides an unambiguous choice to find any 
particular type of code module

www.EmINENTMicro.comwww.EmINENTMicro.com
©Copyright 2004 Eminent Microsystems Inc.



Standard Practice for CPU, Platform, 
and Operating System Independence.

Ø Hardware Abstractions – generic interfaces to low-level hardware. Device drivers use 
abstract interfaces to get to an interrupt controller, PCI bus, etc.

Ø Operating System Abstraction – no direct calls to any OS specific service. Thread 
creation, mutual exclusion,  and communication services use a common abstract interface.

Ø Environmental Headers – environmental dependencies isolated to specific environ.h 
and library standard headers. Standard DebugPrintf()interface. No pollution of core code 
modules with hundreds of “ifdefs”.

Ø Code Module Naming and Function – module names are not too broad or too narrow 
to specify exactly the single (large-grain, high-level or small-grain, low-level) function. 

Ø Allocation – allocation strategy is externally specified and not built-into libraries. I.e. no 
built in heap style allocation.

Ø File I/O – application specific file I/O is not built-into libraries.

Ø Device drivers – implementations divided into hardware dependent portion, OS 
dependent portion, and OS/HW independent portion.

www.EmINENTMicro.comwww.EmINENTMicro.com
©Copyright 2004 Eminent Microsystems Inc.



Signal Processing / Math  Library 
Properties

Ø Follows general reusability principles.

Ø Vector/Matrix base classes for “Matlab/Octave style” data arithmetic.

Ø Fortran comparable numerical efficiency.

Ø Mathematical topological graph base classes and streaming mode support for 
easy creation and modification of topological properties – branching, 
insertion/deletion of processing components, etc.

Ø Event, Callback Abstractions to support application independence and application 
specific event handling.

Ø State Machine base classes. 

Ø Core signal processing support – Filter, Signal, FIR, IIR, FFT, etc.

Ø Advanced signal processing support – Filter Banks, Adaptive Filtering, Pattern 
Recognition, Wavelets, Neural Nets, Time-frequency Analysis.

www.EmINENTMicro.comwww.EmINENTMicro.com
©Copyright 2004 Eminent Microsystems Inc.



User Interfaces

Application Specific Signal Application Specific Signal 
Processing Processing 

LibraryLibrary

Operating System (OS) InterfaceOperating System (OS) Interface
((Thread, Mailbox SemaphoreThread, Mailbox Semaphore class, etc.)class, etc.)

Network ProtocolsNetwork Protocols

Hardware Abstraction Layer (IRQ, PCI, IC headers, Hardware Abstraction Layer (IRQ, PCI, IC headers, 
etc.) etc.) (Embedded app)(Embedded app)

Device Driver Library (Ethernet, Serial Port, Flash ROM, SPI, EtDevice Driver Library (Ethernet, Serial Port, Flash ROM, SPI, Etc)c)

Command Console Command Console 
(serial & Telnet)(serial & Telnet)

OS interface implementationOS interface implementation
((RealReal--time kernel, POSIX, WIN32, etc.)time kernel, POSIX, WIN32, etc.)

Boot and Power On Self Test (POST) (Embedded app)Boot and Power On Self Test (POST) (Embedded app)

Generic Sockets InterfaceGeneric Sockets Interface
(Socket class)(Socket class)

Datatype / Algorithm libraryDatatype / Algorithm library

(Embedded) Web site(Embedded) Web site Local GUILocal GUI

HighHigh--Level App Specific Modules (Sensor Management, Data  Analyzer, VLevel App Specific Modules (Sensor Management, Data  Analyzer, Virtual Monitor, etc.)irtual Monitor, etc.)
((indepindep. of user interface; abstract algorithm & device driver details;. of user interface; abstract algorithm & device driver details; mutual exclusion internal, etc. )mutual exclusion internal, etc. )

CommunicationsCommunications
Library (HTTP, XML Library (HTTP, XML 

schemas, etc.)schemas, etc.)

SignalSignal
Processing Processing 

LibraryLibrary Additional ProtocolsAdditional Protocols
(File, XML parsing, etc)(File, XML parsing, etc)

Other Libraries: GUI, etc.Other Libraries: GUI, etc.

Product Specific ModulesProduct Specific Modules

Reusable ModulesReusable Modules

Generic Application Architecture

www.EmINENTMicro.comwww.EmINENTMicro.com
©Copyright 2004 Eminent Microsystems Inc.



Generic Application Standards

Ø Strict one way layering – higher layers can call lower layers, but NEVER vice/versa. 
Asynchronous information/events flow from lower layers to higher layers using registered 
“Callback objects” (reusable Callback code in library). Completely change (add a new) 
higher level with NO changes to a lower one.

Ø Application domain abstractions - high-level interfaces of minimum complexity that 
naturally capture application behavior and completely encapsulate and hide 
implementation detail – device driver interfaces, signal processing algorithms, 
communication methods, etc.

Ø Primacy of application specific entities – number of threads or  processes is an 
internal implementation detail that should be hidden behind application domain interfaces.

Ø Standard files for application layer configuration – E.g.
- Datatypes.h – datatypes and algorithm configuration (sizes of buffer pools, etc.)
- Devices.h, devices.cpp –device driver layer configuration. 
- Protocols.h – protocol layer configuration.

www.EmINENTMicro.comwww.EmINENTMicro.com
©Copyright 2004 Eminent Microsystems Inc.



Ø Develop the highest reputed, most capable, and most innovative products

Ø Faster new product time-to-market 

Ø Reduced product development costs

Ø Reduced cost of field support and maintenance

Ø Higher product quality/reliability 

www.EmINENTMicro.comwww.EmINENTMicro.com

Why is an embedded reusability 
strategy important for fulfilling 
corporate goals/objectives?

©Copyright 2004 Eminent Microsystems Inc.



www.EmINENTMicro.comwww.EmINENTMicro.com

Thank YouThank You

©Copyright 2004 Eminent Microsystems Inc.


